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ABSTRACT
The SpiderFLOAT (SF) is an offshore wind turbine substructure that promises to drastically re-
duce project capital expenditure via its modularized slender structure, efficient load path, and
effective use of materials. The structural design of the SF must both guarantee component relia-
bility as well as floater stability. This article discusses the theory and the analytically developed
method to determine the internal loads and the required dimensions of the SF’s main compo-
nents during preliminary design. The classic elastic beam theory is extended to a higher order
to account for buckling risk and shortening due to bending, and applied to the SF’s typical leg
member. Two key load cases are considered in this preliminary sizing, analyzed against both
service and ultimate limit states (SLS and ULS). The first loading scenario occurs on a dry-dock
during SF’s assembly and is associated with the pretensioning of the cables, which guarantee
both the overall structure stiffness as well as the concrete leg and stem prestress. The second
load case is an operational condition at sea and near turbine rated-power. After assessing the
loads, the leg dimensions and the reinforcement geometry are determined by satisfying both
SLS and ULS requirements based on design standards. The newly developed structural model
is implemented in the software tool SOFT4S which was verified against ANSYS. The excellent
agreement between the two codes proved that the computationally light SOFT4S can be reliably
used in the optimization of the SF components in the context of control co-design, where both
controls and structures are simultaneously designed to reduce overall costs.

1. Introduction
Nearly 60% of the calculated U.S. offshore wind energy resource potential is over waters more than 60m deep,

where development of fixed-bottom offshore wind turbines is both technically and economically prohibitive (Musial
et al., 2016a). Though this area is estimated to be able to provide the equivalent of the entire U.S. annual electricity
consumption if tapped with power plants composed of floating offshore wind turbines (FOWTs) (Musial et al., 2016b),
the high cost of state-of-the-art FOWTs poses a formidable barrier to its exploitation.

In response to this problem, the U.S. Department of Energy (DOE)’s Advanced Research Projects Agency-Energy
(ARPA-E) kicked-off a new program: Aerodynamic Turbines Lighter and Afloat with Nautical Technologies and In-
tegrated Servo-control (ATLANTIS). This program, among other goals, seeks to promote the design of radically new
FOWTs by maximizing their rotor-area-to-total-weight ratio while either maintaining or ideally increasing turbine gen-
eration efficiency. This would yield levelized cost of energy (LCOE) values that make deep water sites economically
viable to FOWT wind development. The program encourages the application of control co-design (CCD) methodolo-
gies to integrate feedback control and dynamic interaction principles as the primary drivers of the design.

The Floating Wind Technology Company together with the department of Electrical Engineering at Colorado
School ofMines (CSM) and amultidisciplinary team comprised of theNational Renewable Energy Laboratory (NREL),
the University of Colorado at Boulder (CU), the University of Virgina (UVA), and the American Bureau of Shipping
(ABS) are involved in a project named Ultra-flexible Smart Floating OffshoreWind Turbine (USFLOWT). USFLOWT
is funded by ARPA-E’s ATLANTIS program and has the goal of reducing FOWT’s LCOE via the innovative platform
SpiderFLOAT (SF) supporting a state-of-the-art, 10-MW class wind turbine.

⋆This study was conducted during the Ultra-flexible Smart Floating Offshore Wind Turbine (USFLOWT) research project funded by the Ad-
vanced Research Projects Agency-Energy (ARPA-E).
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SpiderFLOAT Structural Optimization

The SF substructure (Fig. 1) was conceived to enable CCD optimization including smart control systems for mass
minimization, system stability, and performance. The components of the substructure are fully modular and designed
for ease of manufacturing (through a combination of local-content prefab and onsite manufacturing), transport, and
installation. The low fixity level of the joints transfers minimum bending loads among the members, thus reducing
demand on structural resistance, and allowing for tunable system hydrodynamic stiffness. Rather than responding to the
waves as a rigid unit, SF’s compliant members can have individual dynamics, thus can mitigate wave hydrodynamic
forces and damp unwanted energy with only a reduced portion transferred to the rotor-nacelle-assembly and tower.
Compared to currently deployed heavy and stiff floaters of oil and gas (O&G) derivation (e.g., Fig. 2), SF’s innovative
ultracompliant approach becomes evident. However, this ultra-flexible layout gives rise to complex dynamics and
therefore requires a robust control system to maintain stability and performance.

Figure 1: Artist rendering of the SF substructure (source: J. Bauer, NREL).

(a) (b)

Figure 2: Typical FOWTs currently in operation; (a) PPI’s WindFLOAT (source Principal Power, Inc.); (b) Ideol’s FloatGen
(source Ideol).

SF makes use of reinforced concrete (RC) with an effective pre-stressing strategy realized via the very same stay-
cables that guarantee the structural shape and functional integrity of the floater. RC structures can offer ample versatility
in design and construction, can take advantage of local material and labor resources, are virtually maintenance free,
feature cost-competitive material (concrete and steel) utilization, and have excellent fatigue and dynamic damping
properties. The SF can largely be manufactured at port and with relatively small footprint. The legs are modular, with
three or more segments, precast or slipformed at port. The leg segments can be stacked in a relatively small staging
area, and picked up andmoved to the assembly dockwhere they are bolted and grouted at their connections and installed
R. Damiani and M. Franchi: Preprint submitted to Elsevier Page 2 of 35
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onto the SF. The central stem is also fabricated out of RC, assembled in bolted/grouted segments, and benefits from the
pre-compression realized by the same stay (post-tensioning) cables. This modular, industrialized construction method
allows for simultaneous multi-component fabrication and parallel staging with minimum real-estate usage, therefore
mitigating the drawbacks often attributed to concrete construction. The buoyancy cans are comprised of bundles of
glass-fiber reinforced plastic (GFRP) pressure vessels tied together and linked to the ends of the legs during assembly.
The cans can also be fabricated on-site via filament winding.

In this study, we developed an engineering model to determine the internal loads on the cables and legs that can
then be used to size both components. Whereas this model can help size the SF central stem, the stem design will
be the object of a future article. In our approach, the classical linear elastic beam theory was analytically extended to
include second-order effects (e.g., P-� moment amplification) that could lead to both an amplification of the bending
stresses and to global instability. The theory was used to help close a system of equations for the static balance of the
leg-cable subsystem that would otherwise be indeterminate.

The new theory was developed from first principles and implemented into a Python code, i.e., SpiderFLOAT
Offshore Floater Tool for Sizing (SOFT4S), that can leverage OpenMDAO’s optimization framework (Gray et al.,
2019) and the aero-hydro-servo-elastic (AHSE) tools OrcaFLEX (Orcina Ltd, 2020) and OpenFAST (Jonkman, 2013).
SOFT4S can in fact produce input files for these AHSE codes after determining the preliminary dimensions of the SF.
In turn, AHSE simulations provide more accurate estimates of the external loads needed to run SOFT4S. As such,
SOFT4S allows for quick turn-around analyses of the USFLOWT support structure and system dynamics within the
CCD iterations. Numerically efficient tools, such as the one we propose, are, in fact, needed to guide the floater pre-
liminary design through a multidisciplinary optimization infrastructure thereby rendering an effective balance between
system mass (thus costs) and performance. Additionally, within OpenMDAO’s framework, when coupled to a system
and plant cost model (e.g., Dykes et al., 2011), SOFT4S allows for the full gamut of component investigations to arrive
at LCOE-optimized wind turbine and/or power plant layout.

In stand-alone mode, SOFT4S aids the designer in the search for an optimal preliminary configuration (e.g., stem,
leg, stay cable geometry) for given environmental loading conditions. The optimization criteria (e.g., minimum sub-
component mass or overall total structural mass) are customizable depending on the user’s needs. SOFT4S also allows
for parametric investigations and sensitivity analyses of both external factors and geometric variables that may drive
the characteristics of the structure, thereby illustrating their impact on the mass, stiffness, strength, reliability, and
expected costs.

SOFT4S can determine, among other design variables, the required leg length, its outer and inner diameters, its
embedded reinforcement, and the number, size, and prestress values of the cables. A set of functions implement
structural code checks per ACI (2014) to verify the leg cross-section under serviceability limit state (SLS) and ultimate
limit state (ULS) and at various stations along the span. The design (fixed) parameters (inputs to the tool) include:
lumped and distributed hydrodynamic loads, joint overall geometry, buoyancy and weight of the cans, and material
characteristics. The hydrodynamic distributed loads are derived from AHSE simulations. Acceptable ranges for the
design variables (e.g., maximum and minimum diameters, prestress levels, rebar and hoop reinforcement size and
numbers) must also be provided as input parameters.

The model has undergone preliminary verification. A future version of the model will include a refined fatigue
treatment, and automatic selection of standard dimensions for the various subcomponents.

This document discusses the geometry of the SF in Section 2, with an overview of the nomenclature used throughout
this study. The load determination problem and its indeterminate nature are presented in Section 3. Section 4 first
presents the newly developed analytical beam theory and then a compatibility approach to make the force system
of equations determinate. Section 5 discusses the necessary steps for SLS and ULS leg verification. In Section 6,
SOFT4S is used to derive a preliminary design for legs and cables of the SF, and a cross-verification of the newly
developed model is performed against a commercial finite-element method (FEM) package. A summary of SOFT4S’s
development and planned future research are provided in Section 7.

2. Geometry and Coordinate Systems
The geometry of the SF main components is shown in Fig. 3. Also shown are the symbols used in this study to

denote the main design variables. Due to the 120 deg symmetry, for simplicity we will focus on 1/3 of the SF and
analyze one leg with its cable systems. Although the analytical development is carried out in the vertical plane for
increased clarity, the lateral plane statics is analogous and the axis-symmetric nature of the leg allow for a combination
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of the loads in a new coordinate system.
The typical mooring line (not shown) is connected via a fairlead at the joint between the leg and the buoyancy can.
There are two main coordinates systems employed in this development: one is the ‘global’ reference frame also

shown in Fig. 3, and the other is the beam ‘local’ coordinate system shown in Fig. 4. The global reference frame has
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Figure 3: From top-left corner counterclockwise: top, front, side, and isometric views of the SF’s single leg-cable sub-
assembly with nomenclature used throughout this paper.
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Figure 4: SF global reference frame and leg local reference frame used throughout this development.

the origin at the intersection of the mean sea level plane and the central stem axis in the undisturbed configuration,XGis along the nominal wind direction, ZG is vertical and pointing upward, and YG per right-hand rule. In this study, the
rigid body rotation (pitch, roll, and yaw expected less than ∼10°) are assumed negligible without losing in generality.
AHSE simulations proved that the largest distributed hydrodynamic loads exerted on the leg (inertial plus viscous drag
components on the order of 1 × 103 Nm−1) are about an order of magnitude less than the buoyancy component (on
the order of 1 × 104 Nm−1).
R. Damiani and M. Franchi: Preprint submitted to Elsevier Page 4 of 35



SpiderFLOAT Structural Optimization

The leg local reference frame (Fig. 4) has origin in A, joint between leg and central stem, zb is along the leg axis,
xb is perpendicular to zb and nominally in the horizontal plane, and yb points downward following the right-hand rule.

3. The Load Determination Problem
The SF in Fig. 3 can be reduced to an assembly of beams and tension-only members (the cables). In Fig. 5, we

examine the forces acting on the hinge B. Here we consider the action of the twin cables (C1a,C1b and C2a,C2b
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Figure 5: Diagram showing the force balance at joint B in the vertical plane containing the central stem axis and the leg.
Meaning of symbols in main text and Section 3.1.

) in the vertical plane XGZG. As a simplification in the treatment of this structure, an equivalent single cable with
a doubled cross-sectional surface area replaces each cable pair; these equivalent cables are denoted by C1 and C2,
for the lower and upper cable, respectively. Because of the expected SF geometry, the difference between the tension
calculated for the equivalent cable and the sum of the associated cable pair tensions is less than 0.6%. Accordingly,
we will denote the resultants of the cable tensions in the vertical plane asNC1 andNC2, for the lower and upper cablepairs, respectively.

The lateral plane statics can be treated in a similar fashion to what will be presented here; for sake of clarity and
because the driving loads resulted to be those associated with the vertical plane statics, we concentrate on the latter
plane and forgo the treatment of the former in this article. The lateral component of the cable tension as well as the
leg shear and bending in the lateral plane, however, are fully included in our software SOFT4S implementation.

Finally, the structure in Fig. 5 is shown with the stem in the upright position. As mentioned above, a non-nil heel
angle has to be expected during turbine operation (≲ 10°), but the theory development is virtually unchanged when
accounting for a constant bias in the platform attitude angles. For sake of clarity, in this paper, we omit the small listing
angle effects, though SOFT4S’s implementation includes these details as well.
3.1. Statically Indeterminate Structural System

We can write the balance of forces at B, in the global coordinate system (XG,ZG), as in Eq. (1):
{

NC1 cos
(

�C1
)

−Ne cos
(

�L
)

+NC2 cos
(

�C2
)

+ Fc = 0
−NC1 sin

(

�C1
)

+Ne sin
(

�L
)

+NC2 sin
(

�C2
)

+ Beff = 0 (1)
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where Ne is the equivalent force aligned with AB and acting onto the leg, therefore −Ne is the reaction from the leg
onto joint B; �C1, �L, �C2 are the angles between the normal to the stem axis and the various members, after any
deflection occurred; Fc is the horizontal component of the force exerted by the can and mooring line onto the leg,
due to hydrodynamic and inertial loading, and assumed known; Beff is the effective buoyancy magnitude at joint B,
accounting for other hydrodynamic forces, for the weight of the buoyancy can bundle, half the weight of the cables,
and half the weight of the leg as shown in Eq. (2):

Beff = |Bc| −
(meffLL0 + 2MC +MC1 +MC2) ∗ g

2
= |Bc| −

M̄g
2

(2)
where Bc is the buoyancy force at B; meff is the effective mass per unit length, to account for hydrostatic buoyancy,
hydrodynamic, and distributed inertial loads; LL0 is the leg length in the undeformed condition;MC is the mass of the
buoyancy can bundle at B;MC1 is the mass of cable set C1;MC2 is the mass of cable set C2; and g is the magnitude
of the gravitational acceleration.

Assuming the angles �C1, �L, and �C2 as shown in Fig. 5 are known, the unknowns are then three: NC1,NC2,Ne.Note that because all of the forces intersect at B, the resultant moment is intrinsically nil, and therefore the system of
equations is underdetermined. It is straightforward to prove that the beam system is, in fact, one time hyperstatic. This
means that to close the system of equations in Eq. (1), one must account for the stiffness of the members, and therefore
obtain a new equation.

By examining the displacement of the joint B, from B0, i.e., its position before any load application, to its final
position, one could write an equation linking the displacement (uB , wB) in the global reference frame to that in the
local beam reference frame, as shown in Eq. (3) and Fig. 6:

w(LL0) = uB cos �L +wB sin �L (3)
So one could write the expression for w(LL0) from the elastic line theory applied to the leg member as a function of
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Figure 6: Two-dimensional displacement of the B joint (uB,wB) under externals forces. LC1,f , LC2,f , and LL denote the
lengths, in the deflected configuration, of cables C1 and C2, and leg, respectively. The meaning of other symbols is given
in the main text.

the stiffness properties of the leg and then use Eq. (3) to tie that to the overall system geometry and close the system
in Eq. (1).

In the next Section, an innovative analytical beam theory is provided to help solve the indeterminate structural
system.

4. Elastic Beam Theory Extension and Solution of the Indeterminate Structure
A new theory is developed that is nonlinear in terms of final configuration geometry, but still linear in terms of

material stress-strain relationship. In this Section, we highlight the main equations of this new analytical method, but
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the full mathematical development is offered in Appendix D. In Sections 4.1–4.3, the classical beam theory is modified
to include a contribution from the bending deformation to the normal force, by retaining a second order term in the
Taylor expansion of the axial strain. This allows to write the equilibrium of the external loads and internal forces
on the deformed configuration of the structure. In turn, this allows to include changes in the geometric stiffness of
the leg, and therefore second-order (‘P-�’) effects associated with potential buckling and instability. Most traditional
methods for incorporating these effects in the analysis of structures are based on time-consuming iterative techniques
(Wilson, 2002; Powell, 2010). In Section 4.4, the indeterminate system of equations presented in the previous Section
is augmented with a compatibility equation derived from the modified beam theory, which allows its solution.
4.1. Derivation of the Beam Internal Loads and Transverse Deflection

Given the slender geometry of the typical SF leg, it is reasonable to treat the leg as an ideal Euler-Bernoulli beam
(Timoshenko and Young, 1965). We start this development by analyzing an infinitesimal segment of a leg as shown
in Fig. 7. In Eq. (4), the balance of the forces acting on the infinitesimal beam segment is written along yb and zb in

T+dT
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Figure 7: Infinitesimal segment of beam in its deformed condition and external and internal loads acting on it. Meaning
of symbols in main text.

the local (undeformed) coordinate system:
{

d
(

N cos
(

v′
))

− d
(

T sin
(

v′
))

+ p(zb)dzb = 0
d
(

T cos
(

v′
))

+ d
(

N sin
(

v′
))

+ q(zb)dzb = 0 (4)

where N is the axial load at the span station of interest; v is the deflection normal to beam axis in the yb direction; Tis the shear component along the y-axis at span station of interest; p(zb) is the component of the external, distributed
static loading along the beam zb axis; q(zb) is the component of the external, distributed static loading along the beam
yb axis; d denotes the differential operator. Throughout this paper, the prime symbols ′, ′′, and ′′′ denote first, second,
and third order spatial derivatives relative to zb, respectively.Assuming a constant cross-section leg, p(zb) and q(zb) can be written as in Eq. (5):

{

p(zb) = −meffg sin
(

�L
)

q(zb) = meffg cos
(

�L
) (5)

where �L is the angle between global x and leg; and meff (zb) = meff is the effective mass per unit length, to account
for hydrostatic buoyancy, hydrodynamic, and distributed inertial loads. Results obtained from AHSE simulations
demonstrated that consideringmeffg as uniform along the leg span is a valid approximation. The distributed buoyancy
is, in fact, the largest contribution from the hydrodynamic actions and the peak values of other loading components
do not vary significantly along the span. Under these hypotheses, and considering the boundary conditions at zb=0m(see also Fig. 17), Eq. (4) can be integrated to give expressions forN and T as shown in Eq. (6):

⎧

⎪

⎨

⎪

⎩

N = −
[

Ne + meffg sin
(

�L
)

(

LL0
2

− zb

)]

cos
(

v′
)

+ meffg cos
(

�L
)

(

LL0
2

− zb

)

sin
(

v′
)

T =
[

Ne + meffg sin
(

�L
)

(

LL0
2

− zb

)]

sin
(

v′
)

+ meffg cos
(

�L
)

(

LL0
2

− zb

)

cos
(

v′
)

(6)
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Note that the reaction at the joint A was divided into two contributions: one aligned with the global ZG and one (Ne)
aligned as AB. It is straightforward to verify that the vertical component must be equal to 1/2 the effective weight of
the beam. No other force can act on joint A for equilibrium of the leg.

The balance of moments about the right end of the beam segment and along the local xb ≡ YG can be written as in
Eq. (7):

M ′ −
[

N sin
(

v′
)

+ T cos
(

v′
)] (

1 +w′) +
[

N cos
(

v′
)

− T sin
(

v′
)]

v′ = 0 (7)
whereM is the bending moment about the local xb axis at the span station of interest.

Making use of Eq. (6), Eq. (7) can rewrite as in Eq. (8):

M ′ =
[

meffg cos
(

�L
)

(

LL0
2

− zb

)]

(

1 +w′) +
[

Ne + meffg sin
(

�L
)

(

LL0
2

− zb

)]

v′ (8)

By integrating Eq. (8) between zb= 0m and the generic ẑb, and making use of the boundary conditions at the hinge
at zb=0m, one arrives at the expression for the bending moment about xb (Eq. (52)). By neglecting further shear
contributions to the curvature of the beam axis, denoting by Ec the concrete Young’s modulus, and by Jxxceff 1 thenormalized concrete cross-sectional second area moment of inertia, the Euler approximation M = −EcJxxceffv′′could be used. This would result into a second order, linear ordinary differential equation (ODE) for the deflection v.
This ODE, however, does not lend itself to an analytical solution, hence two simplifications are performed on Eq. (8).

The first simplification neglects the terms containing w. In concrete, it is common to assume a maximum com-
pressive strain at ULS �cu ≃ −0.003, thus the term (1 + w′) in Eq. (8) can be taken as 1. However, even with
this simplification, the resulting ODE has variable coefficients and does not have a readily useful analytical solution.
Therefore, a second simplification consists of replacing the term meffg sin

(

�L
)

(

LL0
2

− zb

)

that multiplies v′ with
its mean value in (0, LL0), which can be easily proven to be 0. Eq. (8) can now be analytically integrated with nil
boundary conditions at A to return an expression for v as in Eq. (9):

v(zb) =
meffg

Ne�2
cos(�L)

[

cos(�zb) +
1 − cos(�LL0)
sin(�LL0)

sin(�zb) −
LL0 − zb

2
zb�

2 − 1
]

(9)

where � is taken as:

� =

√

Ne
EcJxxceff

(10)

Note that for �LL0 → 0 the expression in Eq. (9) goes to infinity, i.e., we have the Eulerian buckling condition
(Timoshenko and Gere, 1963) of �LL0 = ic� (ic = 1, 2..∞) which would render the critical load (Ne,cr):

Ne,cr =
�2EcJxxceff

LL02
ic
2 (11)

4.2. Nonlinear Constitutive Equation and Derivation of the Beam Axial Deflection
To complete this extension of the beam theory, we seek to find an expression for w(zb) that can be used to solve

Eq. (3).
By retaining up to second-order terms in the Taylor expansion of its definition, the total strain � can be expressed as

the sum of the axial strain,w′, and the shortening of the beam due to bending, 1
2
v′2 (see Appendix D.1 and Fig. 7). The

axial forceN can therefore be expressed as in Eq. (12) introducing a nonlinearity in the beam constitutive equation:
N = EcALeff � = EcALeff

[1
2
v′2 +w′

]

(12)

whereALeff 1 is the concrete, leg cross-sectional area normalized for nonprestressed rebar (see also Section 5). Starting
from Eq. (6), and acknowledging the constitutive equation in Eq. (12), one can write a partial differential equation

1See Section 5 for its definition.

R. Damiani and M. Franchi: Preprint submitted to Elsevier Page 8 of 35



SpiderFLOAT Structural Optimization

(PDE) for w that includes terms in v. Accounting for small angle deflection approximation (v′ << 1, thus cos(v′) ≃ 1
and sin(v′) ≃ v′), and replacing v(zb) for the expression in Eq. (9), and by integrating,w can be attained as in Eq. (13):

w(zb) = − 1
EcALeff

[

Ne ∗ zb + meffg sin
(

�L
)

(

LL0zb − zb2

2

)]

+

(

meffg cos(�L)
)2

EcALeffNe

[

1
�2

(

LL0
2

− zb

)

cos (�zb) −
LL0
2�2

+
sin (�zb)
�3

+
6LL0zb2 − 3LL02zb − 4zb3

12
+ tan

�LL0
2

(

sin(�zb)
�2

(

LL0
2

− zb

)

+ 1
�3

(

1 − cos (�zb)
)

)]

+

(

meffg cos(�L)
)2

2Ne
2�3

[

−
�zb
2

+
sin (2�zb)

4
+

−4zb3 + 6LL0zb2 − 3LL02zb
12

�3

− tan2
�LL0
2

(

�zb
2

+
sin (2�zb)

4

)

+ 2 sin (�zb) − �LL0 + �
(

LL0 − 2zb
)

cos (�zb)

+ tan
�LL0
2

(

1 − cos2 (�zb)
)

+ tan
�LL0
2

(

2 − 2 cos (�zb) + �(LL0 − 2zb) sin(�zb)
)

]

(13)

4.3. Summary of the Extended Elastic Beam Theory
Including the approximations assumed so far, the beam internal loads can be written as in Eq. (14):
⎧

⎪

⎪

⎨

⎪

⎪

⎩

N = −
[

Ne + meffg sin
(

�L
)

(

LL0
2

− zb

)]

+ meffg cos
(

�L
)

(

LL0
2

− zb

)

v′

T =
[

Ne + meffg sin
(

�L
)

(

LL0
2

− zb

)]

v′ + meffg cos
(

�L
)

(

LL0
2

− zb

)

M = −EcJxxceffv′′

(14)

where v,v′,v′′ are given in Eq. (15)
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

v(zb) =
meffg

Ne�2
cos(�L)

[

cos(�zb) +
1 − cos(�LL0)
sin(�LL0)

sin(�zb) −
LL0 − zb

2
zb�2 − 1

]

v′(zb) =
meffg
Ne�

cos(�L)
[

cos(�zb) ∗
1 − cos(�LL0)
sin(�LL0)

− sin(�zb) −
(

LL0
2

− zb

)

�
]

v′′(zb) =
meffg
Ne

cos(�L)
[

− sin(�zb) ∗
1 − cos(�LL0)
sin(�LL0)

− cos(�zb) + 1
]

(15)

and where � is given in Eq. (10) and the displacement w can be written as in Eq. (13).
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4.4. Compatibility Equation and Solution of the Structural System
From Eq. (3) and Eq. (13), the compatibility equation needed to close the dertermined system balance is obtained

by calculating w(LL0):
w(LL0) = uB cos �L +wB sin �L =

= −
Ne ∗ LL0
EcALeff

+

(

meffg cos(�L)
)2

EcALeffNe

[

−
LL0
2�2

cos (�LL0) −
LL0
2�2

+
sin (�LL0)

�3
−
LL03

12

+ tan
�LL0
2

(

−
sin(�LL0)

�2
LL0
2

+ 1
�3

(

1 − cos (�LL0)
)

)]

+

(

meffg cos(�L)
)2

2Ne
2�3

[

−
�LL0
2

+
sin (2�LL0)

4
−
LL03

12
�3 − tan2

�LL0
2

(

�LL0
2

+
sin (2�LL0)

4

)

+ 2 sin (�LL0) − �LL0 − �LL0 cos (�LL0) + tan
�LL0
2

(

1 − cos2 (�LL0)
)

+ tan
�LL0
2

(

2 − 2 cos (�LL0) − �LL0 sin(�LL0)
)

]

(16)

Performing some algebraic and trigonometric reductions, and recognizing that w(LL0) = LL −LL0 (where LL is the
leg length in the deformed condition), Eq. (16) is rewritten together with the remainder of the structural system load
balance equations as in Eq. (17):

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

NC1 cos
(

�C1
)

−Ne cos
(

�L
)

+NC2 cos
(

�C2
)

+ Fc = 0
−NC1 sin

(

�C1
)

+Ne sin
(

�L
)

+NC2 sin
(

�C2
)

+ Beff = 0
EcALeff (LL − LL0)

LL0
−
⎡

⎢

⎢

⎣

−Ne −

(

meffg cos(�L)
)2

12EcJxxceff
LL04

[

1
LL02�2

+ 12
LL04�4

− 24
LL05�5

tan
�LL0
2

]

−EcALeff

(

meffg cos(�L)
)2

24Ec2Jxxceff 2
LL06

[

1
�4LL04

− 60
LL07�7

tan
�LL0
2

+ 24
�6LL06

+
12

(

1 − cos(�LL0)
)

�6LL06 sin
2 (�LL0)

]

⎤

⎥

⎥

⎦

= 0

(17)
Note that LL is a function of �L, i.e., the final angle assumed by the line connecting AB. The unknowns in Eq. (17)
areNe, uB , and wB; all the other variables, in fact, (namely,NC1,NC2, LL, �C1, �C2, �L, and the final cable lengths,i.e., LC1,f LC2,f ) can be expressed as a function of these three unknowns as it is shown below.

The SF assembly sequence starts with the central stem resting on a stand, while the legs are being positioned at
the correct elevation. The cables are then connected at the As and Bs hinges, and pre-tensioning of the C1 and C2
cable sets occurs to reach a preset tensioning value (e.g., �C1pt,�C2pt) as recorded by the tensioners. Once in the water,with the system fully assembled, the hinge at B would assume a new deflected position i.e., (uB , wB) that also directlyaffects the loads in the cables.

First, the cable tensions, NC1 and NC2, can be thought as given by the superposition of the loads reached during
the prestressing phase (with prescribed stress values of �C1pt and �C2pt, respectively) and those due to the assumed
deflection of the B hinge (i.e., (uB , wB)) when in the water during operation. The cable tensions can therefore be
written as in Eq. (18):

NC1 = NC1(uB , wB , AC1, �C1pt) = Ep ∗ AC1 ∗ �C1 = Ep ∗ AC1 ∗
[LC1,f − LC1,0

LC1,0
+
�C1pt
Ep

]

NC2 = NC2(uB , wB , AC2, �C2pt) = Ep ∗ AC2 ∗ �C2 = Ep ∗ AC2 ∗
[LC2,f − LC2,0

LC2,0
+
�C2pt
Ep

] (18)

By considering the geometry shown in Fig. 6, and via vector additions, we can then derive expressions for LC1,f ,
LC2,f , LL, �C1, �C2, �L (Eq. (19)) as functions of their initial (pre-deflected) values (LC1,0, LC2,0, LL0, �C1,0, �C2,0,
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�L,0) and the deflection (uB , wB):

LC1,f =
√

LC1,02 + 2
(

uB cos �C1,0 +wB sin �C1,0
)

LC1,0 + uB2 +wB2

LC2,f =
√

LC2,02 + 2
(

uB cos �C2,0 −wB sin �C2,0
)

LC2,0 + uB2 +wB2

LL =
√

LL02 + 2
(

uB cos �L,0 +wB sin �L,0
)

LL0 + uB2 +wB2

�C1 = sin−1
LC1,0 sin �C1,0 +wB

LC1,f

�C2 = sin−1
LC2,0 sin �C2,0 −wB

LC2,f

�L = sin−1
LL0 sin �L,0 +wB

LL

(19)

The system of equations in Eq. (17) can thus be solved for the unknownsNe, uB , wB with the following fixed param-
eters:

• Geometry: LC1,0, LC2,0, LL0, �C1,0, �C2,0, �L,0
• Structural Properties: Ec , Ep, ALeff , AC1, AC2, �C1pt, �C2pt, Jxxceff
• Masses and Loads: meff ,MC ,MC1,MC2, Beff , Fc
Note that to account for the effective loads on the leg and C1 cables, the meff ,MC1, and Beff terms are appropri-

ately modified to include distributed buoyancy effects, hydrodynamic viscous and inertial drag, and structural inertia
loading.

5. Leg Dimensioning
The design verification against SLS and ULS of one of SF’s RC legs is performed following the steps highlighted

in this Section. Here, we focus solely on the structural design aspects, and assume that the leg hydrodynamic require-
ments have already been addressed, whereby specifying, for example, minimum leg length, maximum leg mass and/or
buoyancy. The latter demands would be verified by the external optimization loop of SOFT4S.

Generally speaking, the structural verification consists of satisfying SLS, fatigue limit state (FLS), accidental limit
states (ALS), and ULS design requirements. In the case of SF, boat impacts must be considered as concentrated loads
at critical locations along the span of a leg and central stem. Other potential accidental load cases would require
investigating the loss of a stay cable. These aspects are certainly important and will require dedicated studies to assess
the level of acceptable risk and redundancy required. In this paper, we concentrate on SLS and ULS, which should also
guarantee a certain level of safety against ALS and FLS at least for the concrete leg. A considerable amount of research
is still ongoing on reinforced concrete fatigue, but general rules based on damage equivalent load (DEL) and damage
equivalent stress (DES) (FIB, 2013; ECS, 2004; DNV-GL, 2018) can be employed with the internal load determination
model as described in this paper. Furthermore, simplified methods (ECS, 2004) check for an adequate fatigue life by
using the maximum andminimum compressive stress under the most typical load combination. Therefore, the methods
described in this paper can be directly applied to assess the fatigue life of cables and leg. We will address these aspects
in a future article.

An additional verification should be performed on the system and component eigenfrequencies to ensure they lie
within acceptable ranges for resonance avoidance. The eigenfrequency check is outside the scope of this article, but is
an additional constraint that, in parallel to the other structural checks, must be satisfied by the design. The eigenanalysis
can be performed by calculating cross-sectional inertial and stiffness properties and passing them to an ad-hoc finite-
element analysis (FEA) module. Young’s and shear moduli to be used by the FEA are the pure concrete ones, and the
effective density �ceff is calculated as in Eq. (20):

�ceff =
�cAc + �sAstot

Ag
(20)
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Table 1
Examples of SOFT4S’s Geometry and Material Property Inputs

Input Type Description Default
Value Units

�c parameter concrete density 2300 kgm−3

Ec parameter concrete Young’s modulus 38e3 MPa
fc parameter concrete compressive strength 60 MPa
�s parameter longitudinal reinforcement density 7850 kgm−3

Es parameter longitudinal reinforcement Young’s modulus 200e3 MPa
fys parameter longitudinal reinforcement yield strength 414 MPa
�s parameter longitudinal reinforcement Poisson’s ratio 0.33 –
�st parameter shear reinforcement density 7850 kgm−3

Est parameter shear reinforcement Young’s modulus 200e3 MPa
fyst parameter stirrup/tie yield strength 276.0 MPa
�st parameter shear reinforcement Poisson’s ratio 0.33 –
�p parameter cable density 7805 kgm−3

Ep parameter cable steel Young’s modulus 195e3 MPa
fyc parameter cable yield strength 1062 MPa
�t parameter cable Poisson’s ratio 0.33 –
fuc parameter cable ultimate strength 1250 MPa
�C1pt variable normal (axial) stress in cable set C1 at pre-stressing 0.7*AC1*fyc N
�C2pt variable normal (axial) stress in cable set C2 at pre-stressing 0.7*AC2*fyc N
ns,i variable number of non-prestressed, inner longitudinal reinforcement >8 –
ns,o variable number of non-prestressed, outer longitudinal reinforcement >8 –
Ds,i variable inner longitudinal-reinforcement placement diameter – m
Ds,o variable outer longitudinal-reinforcement placement diameter – m
ds,i variable inner longitudinal-reinforcement diameter – m
ds,o variable outer longitudinal-reinforcement diameter – m
sst variable shear reinforcement (spiral/tie) pitch or spacing – m
ssv variable shear reinforcement (spiral/tie) spacing – m
Dss,i variable inner shear-tie placement diameter dL+2cc+dssi m

Dss,o variable outer shear-tie placement diameter DL-2cc-
dsso

m

dssi variable inner shear-tie diameter – m
dsso variable outer shear-tie diameter – m
DL variable leg outer diameter – m
dL variable leg inner diameter – m

where �c is the concrete density; Ac is the pure concrete cross-sectional surface area; �s is the longitudinal reinforce-ment density; Astot is the total nonprestressed reinforcement cross-sectional area at the station of interest; Ag is the
gross cross-sectional area.

The main assumptions made in the leg dimensioning process described in this paper are:
1. The leg cross-section is assumed constant along the leg span. This arrangement streamlines formwork and

manufacturing. As will be shown, the middle-span is the most stressed cross-section, hence tapering would have
to be realized from the leg center toward the ends, and the resulting mass advantage at this point is not deemed
significant. For the same reason, the numbers and sizes of non-prestressing reinforcement could theoretically
change from section to section, but this is beyond the scope of this study.
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2. The tensile strength of the concrete is assumed nil.
3. The generic cross-section is considered uncracked at SLS, but it is allowed to crack beyond that load level and at

ULS. When the load reduces below the SLS level, the crack would close and the leg would retain the necessary
integrity and dynamic properties of an uncracked structure.

Under those assumptions, and with reference to Fig. 3 and Fig. 8, the leg’s geometry and structural properties are
fully determined by:

• outer and inner diameters (DL,dL);
• the number and size of prestressing, stay cables;
• the number and size of nonprestressing reinforcement;
• the number and size of shear reinforcement (ties, hoops, or spirals);
• material properties (as shown, for example, in Table 1).
The structural verification process of a prestressed concrete (PSC) leg design of given geometry and parameters as

in Table 1 starts with the identification of SLS, FLS, and ULS loads.
The SLS loads can be conservatively taken as those at ’quasi-steady-state’, with rated conditions and severe sea state

(e.g., design load case (DLC) 1.6 IEC, 2019). Extreme sea-states with faults (e.g., DLC 6.2 IEC, 2019), extrapolated
loads with return periods of once every 50 yr from DLC 1.1, or other emergency cases may give rise to the ULS loads.
FLS loads can be extracted from normal power production and parked/idling cases (e.g., DLC 1.2 and 6.4 IEC, 2019).
These loads can be derived through dedicated AHSE simulations.

The key steps for SLS and ULS verification are listed below:
1. Determine external loads via AHSE and post-processing of results.
2. Calculate cross-section normalized area and second area moments of inertia.
3. Calculate eigenfrequencies and ensure they are within tolerances.
4. SLS verification

(a) Calculate internal loads solving Eq. (17), which also accounts for second order effects and moment am-
plification due to bending deflection. In the vertical plane, a conservative value of the resultant of the
gravitational, inertial, and hydrodynamic distributed loads can be employed as mentioned in Section 3.
The lateral plane loads are not explicitly treated in this article, but are verified in SOFT4S in a similar
manner. The resultant internal loads in this document are denoted by: N (axial load at the span station of
interest, negative if compressive),M bending moment about the local xb axis at the span station of inter-
est,Mz (torque at the span station of interest), and T (shear component along the y-axis at span station of
interest). In Fig. 9, the local reference frame is shown with the typical leg cross-section, with the x-axis
aligned with the resultant bending momentM , and therefore the y-axis is normal to the neutral axis.

(b) Ensure maximum cable prestress value below allowable (e.g., �C1pt, �C2pt < AC1, AC2 × 0.7fuc) ACI,2014, Section 20.3.2.5) or per cable vendor recommendations; fuc is the cable ultimate strength.
(c) Ensure maximum acceptable leg tip deflection against an adequate threshold, for example one that would

guarantee a safe margin from the slack condition of C2.
(d) Ensure quantities of longitudinal and shear reinforcement are adequate to satisfy design standards (e.g.,

ACI, 2014).
(e) Verify the stresses in the cross-sections of interest against SLS per section 5.1.1. Additionally, ensure

longitudinal and shear reinforcement is adequate to satisfy spacing requirements by ACI (2014). This
verification will also lead to the sizing of cable pre-tension, cable cross-sectional area, concrete, and non-
prestressed reinforcement.

5. ULS verification
(a) As for the SLS, calculate the internal loads for ULS. For simplicity, the resultant loads are still denoted by

the same symbols as for the SLS load case (N ,M ,Mz, and v).(b) Verify the strength of the cross-sections of interest against ULS per section 5.1.2
Note that the SOFT4S code calculates all the geometric and inertial properties for a cross-section defined as in

Fig. 8, including the area first and second moments of inertia and centroids of the individual reinforcement groups and
with respect to an axis of symmetry (say the x axis) or to a calculated chord location (e.g., above the cross-section
neutral axis).
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5.1. Verification of PSC Leg Cross-Section and Cable Cross-sections
The assumed cross-section of the PSC leg and its main (x, y) coordinate system with origin in the geometric center

are depicted in Fig. 8. The meaning of the other symbols are given in Table 1 and in the following Sections.

x

y

D

L

A

s,i

D

s,i

d

L

A

g

D

s,o

D

ss,o

D

ss,i

d

ss,i

d

ss,o

A

pi

Figure 8: SF’s leg typical horizontal cross-section and main geometry item definitions. Reinforcement symbols: DL denotes
the leg outer diameter; dL denotes the leg inner diameter; Ag denotes the gross cross-sectional area; Ds,o (Ds,i) denotes the
outer (inner) longitudinal-reinforcement placement diameter; dsso (dssi) denotes the outer (inner) shear-tie diameter; Dss,o
(Dss,i) denotes the outer (inner) shear-tie placement diameter; As,i denotes the nonprestressed reinforcement cross-sectional
area; Ap,i denotes the prestressing tendon cross-sectional area (note: tendons are shown for completeness, but are unused
in the actual design of the SF leg).

5.1.1. Verification against SLS limit states
At SLS, the cross-section is considered uncracked, therefore, with reference to Fig. 9, the neutral axis position must

satisfy the condition:
yn ≥ DL∕2 (21)

where yn is the neutral axis distance from the cross-section’s centroid. Here the goal is to find the number and size of
cables and the associated prestress levels necessary to guarantee minimum deflection and uncracked conditions of the
leg. The optimal design condition is to have the bottom fiber in Fig. 9 at 0-strain when the SLS load set is applied. The
strain in the concrete, �c(y), can be expressed as a function of YG as shown in Eq. (22):

�c(y)
yn − y

=
�c,min
ℎn

(22)

where ℎn is the neutral axis distance from the cross-section extreme compressed fiber; and �c,min is the minimum strain
in the concrete.

If we ignore the nonlinearity between stress and strain, as commonly done in SLS verifications, and leverage the
uncracked condition and symmetry of the cross-section, then the normalized cross-sectional area and second area
moment (i.e., Ac,eff and Jxxceff , Gilbert and Mickleborough, 2004; MacGregor, 2011) can be used to calculate the
normal compressive stresses in the concrete (�cz) as in Eq. (23):

�cz = f,sls

[

N
Ac,eff

+ M
Jxxceff

y
]

(23)
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Figure 9: Typical strain distribution (�) under axial and flexural loads for a typical leg’s cross-section. Symbols: ℎn is the
neutral axis distance from the cross-section extreme compressed fiber, and that corresponds to the coordinate yn; ys,i is
the y-coordinate of i-th rebar element; Ac(yn) is the pure concrete cross-sectional surface area above the chord at yn; �c,min
is the minimum strain in the concrete.

where f,sls is the load partial safety factor for SLS. For the generic rebar located at ys, assuming perfect bonding of
rebar and concrete, one could attain the compressive stress as in Eq. (24):

�sz(ys) = �cz(ys)nRC (24)
where nRC is the ratio of rebar steel to concrete Young’s moduli.

Once the stresses and strains are known, the criteria indicated in Appendix E must be met per ACI (2014).
5.1.2. Verification against ULS limit states

AtULS, the cross-section is assumed to have reached themaximum compressive strain in the concrete, and possibly
cracked in the tension zone. The verification consists of ensuring that the ultimate strength of the cross-section is
adequate for the ultimate loading conditions. In the case of the leg, a slender member subject to axial and flexure
loading, stability is obviously a possible failure. The model developed in Sections 3–4 implicitly included second
order effects, however. Hence, here, it will be sufficient to concentrate on the cross-section ULS design as would be
done for a ‘short’ member. ACI (2014) requires:

�ACIPn ≥ Nu (25)
�ACIMn ≥Mu (26)
�ACIVn ≥ Tu (27)

�ACITqn ≥Mzu (28)
where Pn,Nu are the nominal axial strength in compression, for a given external bending moment, and factored normal
(axial) load at the station of interest, respectively;Mn,Mu are the nominal bending moment resistance at the station
of interest, and factored bending moment at the station of interest, respectively; Vn, Tu are the nominal shear strength
at the station of interest, and factored shear load at the station of interest, respectively; and Tqn,Mzu are the nominal
torsional strength, and factored torsion load at the station of interest, respectively. First, the axial and bending moment
loads should be assessed against the design interaction curve, then other code check criteria can be verified.

In Fig. 10a, the assumed concrete strain distribution with a maximum compressive strain value equal to �cu anda stress distribution characterized by the stress block (Whitney, 1937; ACI, 2014, Sect. 22.2.2.4.1) are shown. For
generality, the cross-section is shown with prestressed elements as well. It is not expected that these elements will be
needed, given the pre-load coming from the stay cable, however. To extract the nominal cross-sectional strengths, the
following force- and moment-balance system of equations (Eq. (29)) must be solved.

{

N = Cc + Tstot + Tptot
Mn = CcYG|Cc + TstotYG|Tstot + TptotYG|Tptot

(29)
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Figure 10: SF leg cross-section’s strain and stress distributions under the stress-block assumption (a); and definition of
circular-segment  1 and  2 angles associated with the chords at ya (b).

where Cc is the resultant force in the compressive concrete part of the cross-section (negative if compressive) (see
Eq. (30)); Tstot is the resultant force from the nonprestressed reinforcement (positive if tensile) (see Eq. (31)); Tptotis the resultant force from the prestressed reinforcement (positive if tensile) (see Eq. (32)); YG|Cc is the y-coordinateof the centroid of the forces resulting in Cc ; YG|Tstot is the y-coordinate of the centroid of the forces resulting in Tstot;
YG|Tptot is the y-coordinate of the centroid of the forces resulting in Tptot. In Eq. (29), M has been replaced by the
nominal flexural strengths (Mn), to readily provide the utilization as shown below (Eq. (74)).

Cc = �cz(y)Ac(ya) ≃ −0.85fcAc(ya) (30)

Tstot =
ns
∑

i=1
EsiAs,i�s,i (31)

Tptot =
np
∑

i=1
EpiAp,i�p,i (32)

In Eq. (30), Cc is limited to the stress-block of depth a = �1ℎn (corresponding to the coordinate ya), where �1 is thefactor relating the depth of the equivalent rectangular compressive stress block to the depth of neutral axis (ACI, 2014,
Sect. 22.2.2.4.1); As,i is the nonprestressed reinforcement cross-sectional area; �c(y) is the strain in the concrete; �s,i isthe strain in the i-th rebar; �p,i is the strain in the i-th prestressed tendon. In the above equations, the index i has been
added to Es, Ep for generality, though in most common applications those values will be constant for all i values.

For a hollow circular section (Fig. 10b), Ac(ya) can be written as in Eq. (33):

Ac(ya) =
DL

2

8
(

 1 − sin( 1)
)

−
dL2

8
(

 2 − sin( 2)
) (33a)

 1 = 2� − 2 cos−1
2ya
DL

(33b)

 2 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

2� − 2 cos−1
2ya
dL

if |

|

ya|| <
dL
2

0 if ya < −
dL
2

2� if ya >
dL
2

(33c)

Analogously, YG|Cc can be calculated noting that for a circular segment Eq. (34) applies, and appropriately removing
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the contribution from the inner circular segment if ya > −
dL
2
:

YG|Ac (ya) = −2
3

DL
3 sin3

( 1
2

)

− dL3 sin
3
( 1

2

)

DL
2
(

 1 − sin( 1)
)

− dL2
(

 2 − sin( 2)
) (34)

Because it will be used later, we can also calculate the second area moment of inertia (Jxx|Ac (ya)):

Jxx|Ac (ya) =
DL

4

128
(

 1 − sin( 1) cos( 1)
)

−
dL4

128
(

 2 − sin( 2) cos( 2)
) (35)

The generic �c(y) (�p(y)) is calculated via Eq. (36):

�c(y) = �cu
ℎn −DL∕2 − y

ℎn
�s,i = �s(ys,i) = �c(ys,i)
�p,i = �p(yp,i) = �p0,i + �̂p,i

(36)

with
�p0,i =

P0i(1 − R∞)
EpiAp,i

(37)

�̂p,i = �cu
ℎn −DL∕2 − yp,i

ℎn
(38)

where �p0,i is the strain in the i-th prestressed tendon due to prestress only; P0i is the tendon initial prestress force
(positive); �̂p,i is the contribution to the i-th prestressed tendon strain due to bending in the cross-section; Ac,eff is the
effective (normalized) concrete cross-sectional surface area; R∞ is the relaxation loss in percentage of initial preload;
np is the number of prestressing tendons; ys,i is the y-coordinate of i-th rebar element; yp,i is the y-coordinate of i-thprestressed tendon element.

Note that the strain in the rebar (�s(y)) is the same as �c(y), because the rebar is assumed fully bonded with the
concrete. For the prestressing tendons, however, �p(yp,i) must account for the prestress strain and for the concrete
compressive strain at transfer.

Finally the stresses in the reinforcement elements are calculated as Eq.s (39)–(40):

�sz(ys,i) =

{

sign
(

�s(ys,i)
)

fys if |

|

Es�s(ys,i)|| ≥ fys
Es�s(ys,i) otherwise (39)

�pz(yp,i) =

{

sign
(

�p(yp,i)
)

fyp if |

|

|

Ep�p(yp,i)
|

|

|

≥ fyp
Ep�p(yp,i) otherwise (40)

where i = 1..ns,i or i = 1..ns,o for either inner or outer circle reinforcement, respectively. Note that Eq. (40) can be
readily replaced with a nonlinear function of the strain.

As can be easily observed, only one unknown exists, i.e., ℎn, as all the other variables in the above equations are
functions of ℎn. By solving the first of Eq. (29) for a given value of the external axial load N , ℎn can be determined.
Corresponding to that neutral axis position, one could determine the additional external bendingmoment that the cross-
section can withstand. VaryingN from the maximum compressive strength (Pn,max, Eq. (41); per ACI, 2014, Section22.4.2), to the maximum tensile strength (Pnt,max, Eq. (42); per ACI, 2014, Section 22.4.3), one could determine the
associatedMn’s, and compile an interaction diagram as shown in Fig. 15.

Pn,max =
[

0.85fc
(

Ag − Astot − Aptot
)

+ fysAstot −
(

fse − 0.003Ep
)

Aptot
]

{

0.8 if tie shear reinforcement
0.85 if spiral shear reinforcement

(41)
Pnt,max = fysAstot + fseAptot (42)

where fse is the stress in the prestressing reinforcement at nominal axial strength of the cross-section;
To complete the verification against ULS, the criteria listed in Section F must be met.
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(a) (b)

Figure 11: Results from SOFT4S’s structural model in terms of: (a) cable C2 diameter vs. cable C1 diameter that allow
for a nil vertical deflection at post-tensioning; and (b) cable tensions and leg load (aligned with AB) at post-tensioning
transfer as a function of C1 cable diameter. Cable diameters are normalized by the minimum examined C1 cable diameter,
and loads (caret symbols) by the minimum C1 load.

6. Case Study and Model Cross Verification
In this section, we show the results of a preliminary design iteration for the SF leg and cable assembly based on

expected overall footprint, mass, and required buoyancy to support a 10MW turbine, and a generic 70MPa-strength
concrete. As the SF is covered by sensitive intellectual property (IP), we present normalized loads and geometry
quantities from SOFT4S’s results.

Two loading scenarios were considered: the first is representative of the load transfer at post-tensioning during
the assembly phase on land, and the second represents the (quasi-) steady-state situation under operational conditions
at sea. Typical values for effective buoyancy value and the horizontal component of the force exerted by the can
and mooring line onto the leg during operation were derived through dedicated fully-coupled AHSE simulations. On
dry-land, the only external loads considered are due to gravitational effects, both distributed along the leg span and
concentrated at the joints.

The method described in Section 3 was used to arrive at the internal loads for cables and legs. First, a sensitivity
analysis of cable cross-section is given in Fig. 11a. In this graph, the upper cable diameter is shown as a function of
the lower cable counterpart, under the assumption that no vertical deflectionw is permitted at post-tensioning transfer,
and with cable pre-tensioning loads equal to P0,c1 = �C1ptAC1 and P0,c2 = �C2ptAC2, for lower and upper cable,
respectively. In Fig. 11a, the diameters are normalized by the minimum value considered for C1. The upper cable is
considerably less loaded than the lower cable, due to the geometry and the difference between the angles �C1 and �C2,and this also translates in a relatively insensitive variation of the C2 diameter with respect to the size of C1. Note,
in fact, that increasing AC1, for a given pre-tensioning stress, is equivalent to increasing both the leg axial load as
well as the tension in the upper cable, which then requires a larger cross-section for the imposed strength constraints.
The increase in upper- over lower-cable diameter, however, is proportional to a 1:2 ratio. This contributes to keeping
the elevation of the substructure center-of-mass relatively low with obvious advantages on stability, but at the price
of higher load demand on the lower cable and leg. Alternatively, the leg-to-stem joint could be designed at a higher
elevation than that leg-to-can joint. This optimization is outside the scope of this study however.

Fig. 11b shows that the component of the leg axial load aligned with AB (Ne) increases more than the individual
cable tensions as the cable size increases. To fix a set of cable dimensions, more analyses on the dynamic characteristics
of the system should be performed, for example to guarantee avoidance of modal frequencies that can lead to dangerous
resonance. Here, for sake of brevity, we determined the size of the cables based on an acceptablemean leg-tip deflection
of 0.2m at rated conditions and with normal sea-state (significant wave height of 1.13m, 7.22 s peak spectral period).

In Fig. 12a, the leg tip deflections and the loads in the leg and cables are shown as functions of the normalized
can buoyancy. To note is a sharp variation in the deflection occurring when the external load actions exceed a value
of approximately 1.35 the mean buoyancy. In that situation, in fact, the upper cable becomes slack (Fig. 12b) and the
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Figure 12: Results from SOFT4S’s structural model and ANSYS in terms of: (a) leg tip deflections (horizontal and vertical,
uB, wB) as a function of effective buoyancy load magnitude; and (b) cable and leg loads (normalized by the maximum
NC1) as a function of can buoyancy load. Buoyancy values are normalized by the can mean buoyancy calculated in the
assumed operational conditions.

(a) (b)

Figure 13: Results from SOFT4S’s structural model and ANSYS in terms of normal loads (a) and leg axis deflection and
cross-section rotation (b). Results are normalized by the maximum loads and deflections from the post-tensioning case.

overall system may fail. Although not necessarily representing a chosen layout, the present case study is an example of
how the design method can be used to assess safety margins with respect to stability conditions for the entire system.
Changes in the design, for example by selecting a cable layout with higher pre-tension, or further limiting the leg tip
deflection under operational conditions, could guarantee a larger margin of safety with respect to cable slackness.

Turning now to the design of the leg cross-section, Fig. 13 shows the leg’s normal loads, and the translational and
rotational deflections along the span for the two load cases considered herein. As seen from the graphs, SOFT4S’s
nonlinear elastic beam method can account for bending brought forth by second-order effects, and the variation of
the normal load as a function of span due to the transverse deflection. At post-tensioning transfer, the leg maximum
deflection occurs at mid-span, and it is approximately double the mean deflection calculated at operation. At sea, the
component of the distributed weight along the leg axis is non-nil due to the inclination of the leg, and therefore the
largest axial load is registered at the joint with the central stem.

SOFT4S-calculated internal shear and bending moments are presented in Fig. 14. The largest shear values are
found at the leg ends, whereas the maximum bending moments occur at mid-span for both loading scenarios. The at-
sea case renders about half the internal load magnitudes than those at post-tensioning transfer. Again, this emphasizes
how the assembly and the post-tensioning of the SF are critical aspects of both the structural analysis and of the actual
construction phases.

The cross-section verification against SLS and ULS was conducted by conservatively assuming that the maximum
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Figure 14: Results from SOFT4S’s structural model and ANSYS in terms of internal shear and bending moment loads
along the leg span (0 is at the A and 1 at the B joint). Results are normalized by the respective load maxima.

shear acts together with the maximum bending moment and normal load at the mid-span station. The arrangement of
the reinforcement is as in Fig. 9. For the mid-span location, a ULS interaction diagramwas compiled and the results are
shown in Fig. 15. The curves represent the capacity (baseline and factored per (ACI, 2014)) of the optimized (minimum
mass) cross-section, and the markers denote the two loading conditions analyzed in this example. The post-tensioning

Figure 15: Calculated interaction diagram. The curves represent the ultimate capacity of the leg cross-section. The
two points represent the conditions at post-tensioning transfer (blue square) and at operational steady-state (red circle)
(factored for ULS f,uls)

.

load-transfer scenario is the design driving case, and the associated factored loads are just within the acceptable safe
boundaries leading to a well balanced design. The remainder safety margin (∼ 5%) will account for additional effects
unknown at preliminary design.

The component mass was calculated at some 27 t for the cables and 270 t for the leg including reinforcement. With
preliminary estimates on buoyancy-can and stemmasses, we project the total structural mass of the SF at approximately
2000 t. Although this is a preliminary outcome, it shows how the SF departs from heavier conventional designs (e.g.,
PPI’s steel WindFloat at approximately 2400 tonne for an 8MW turbine (Banister, 2018); Ideol’s concrete FloatGen at
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4000 t and 8250 t for a 2MW2 and a 6MW turbine (Choisnet et al., 2016), respectively; University of Maine’s concrete
VolturnUS at 11,200 t for a 6MW turbine (Allen, 2019).)

The results shown in this Section were cross-verified with a dedicated FEA in ANSYS Mechanical APDL Release
2019 R2, commercial FEA package to prove the validity of the newly devised analytical model. The leg was assumed
as made out of an equivalent isotropic material with Young’s modulus equal to Ec and a concrete effective density as
discussed above, further modified for distributed buoyancy effects. The beam was simulated with a set of beam188
elements (more than one to better capture the deformed shape), whereas the cables were discretized with a series of
link180 subjected to a pretension proportional to their cross-sectional areas. Data extracted from ANSYS runs (Fig.s
12–14, Fig. 16)) exhibited excellent agreement with results from SOFT4S in terms of both internal loads and deflec-
tions. In Fig. 16, we report ANSYS plots of the calculated nodal displacement w, the normalized axial force in cables
and legs, and the bending moment in the leg for the studied operational case. For completeness, an eigenfrequency
analysis was performed to assess the first few structural modes. The first mode (1.94Hz) is in the lateral plane, whereas
the first mode in the vertical plane showed a frequency of 3.68Hz (see Fig. 16d).

The shape functions in ANSYS’s beam element do not readily capture the second-order effect that our new method
includes, and the FEA had to be carried out in a fully nonlinear fashion to achieve results. Whereas ANSYS requires
only a few seconds to solve the analysis (versus SOFT4S’s less than 1 s on a modern Intel 7 CPU), it also requires
lengthier set-up and post-processing activities, and does not lend itself to an expedited integration with gradient-based
optimization. SOFT4S, on the other hand, facilitates the expedited design of experiments and allows for a full ex-
ploration of the sensitivity to design variables and constraint parameters. More importantly, SOFT4S’s analytical
nature promotes a thorough understanding of the physics involved and guides the designers toward a more efficient
optimization reducing risk to the project.

7. Conclusions and Future Work
The floating substructure and mooring components comprise about one third of the capital expenditure (CapEx)

of a typical floating offshore wind power plant and are responsible for ∼20% of the LCOE (Stehly and Beiter, 2019).
Reducing the cost of the floating platform can therefore greatly influence the final commercial viability of floating
offshore wind. The SF was conceived to reduce these costs via a modularized slender structure, an efficient load
path, an effective use of materials leveraging established concrete supply chain, and an industrialized approach to
manufacturing. The structural design of the SF must both guarantee component reliability as well as floater stability.

In this paper, we developed a new analytical model to size both the leg and the stay cables, key components of
the SF. The employed nonlinear, second-order method is capable of accounting for beam shortening due to bending
and second-order bending due to compression. As such, this method inherently includes design and analyses against
buckling instability. The method is implemented in SOFT4S, a tool for the optimization of the SF that includes hy-
drodynamic requirements, CCD inputs, and a cost model. Together with this new analytical beam theory, the steps
necessary for the qualification and verification of the RC leg cross-section were presented primarily following ACI
(2014). The SLS and ULS verifications were the focus of this study, although FLS will be analyzed following FIB
(2013) and ECS (2004) once a complete load spectrum is captured by appropriate AHSE simulations that are being
carried out within the ATLANTIS USFLOWT project. The newly devised method will serve as the main design and
analysis tool to extract DELs and DESs.

The majority of the leg loading originates from the cable tensions, concentrated buoyancy thrust at the joint with
the can, and distributed buoyancy along the leg span. Transverse hydrodynamic loading and other components in
the vertical plane (e.g., viscous drag or inertial actions) are orders of magnitude smaller, as based on the preliminary
results of AHSE simulations. Additionally, the listing angle of the SF is limited to ∼ ±10 deg. For these reasons, and
for added clarity, the analysis was limited to the vertical plane statics, without losing in generality, with an obvious
extension to the transverse statics.

A case study was provided to prove the capability of SOFT4S’s structural model. Two loading situations were
analyzed: the load transfer at post-tensioning, and the at-sea, operational quasi-steady-state loading scenario. First, the
results of the model helped select the cable size for a prescribed mean leg tip deflection. Then, the returned internal
loads were used to size the cross-section and its reinforcement. The data demonstrate that SOFT4S is capable of
optimizing the cross-section of the leg and cables given the constraints discussed in Section 5.1, while also guaranteeing

2https://www.mre-paysdelaloire.com/news/the-floatgen-floating-wind-turbine-at-a-new-operational-stage/
accessed 11/2020
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(a) (b)

(c) (d)

Figure 16: Results from a dedicated ANSYS FEA showing the vertical component of the deflection w (a), the axial force
(b), and the bending moment (c) normalized by the respective maxima calculated in the leg; and (d) the second eigenmode
shape.

hydrostatic stability of the floater and other hydrodynamic performance parameters that will be discussed in a separate
paper. The model is computationally efficient and sensitivity analyses for assessing trade-offs between structural mass
and control demand to safeguard floater stability and performance can be performed with negligible impact on the
design process timeline.

A cross-verification against the commercial package ANSYS showed excellent agreement in the results of the
static load and deformation analysis. It is important to note that element shape functions in commercial FEM software
typically miss the second-order effects that SOFT4S’s beam model encompasses, and require multiple nonlinear runs
to reach the same results.

The model is now being extended to the central stem of the SF and, with some modifications, to the buoyancy
cans. Additionally, we are planning to include a modal analysis capability that will help identify viable designs against
frequency acceptance bands. When complete, SOFT4S will then render mass or cost optimized configurations of
cables, central stem, and legs, for given environmental conditions, control system and turbine parameters.

A. List of Acronyms
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ABS American Bureau of Shipping
AHSE Aero-hydro-servo-elastic
ALS Accidental limit states
ARPA-E Advanced Research Projects Agency-Energy
ATLANTIS Aerodynamic Turbines Lighter and Afloat

with Nautical Technologies and Integrated
Servo-control

CapEx Capital expenditure
CCD Control co-design
CSM Colorado School of Mines
CU University of Colorado at Boulder
DEL Damage equivalent load
DES Damage equivalent stress
DLC Design load case
DOE Department of Energy
DOF Degree of freedom
FEA Finite-element analysis
FEM Finite-element method
FLS Fatigue limit state
FOWT Floating offshore wind turbine

GFRP Glass-fiber reinforced plastic
IP Intellectual property
LCOE Levelized cost of energy
NREL National Renewable Energy Laboratory
O&G Oil and gas
ODE Ordinary differential equation
PDE Partial differential equation
PSC Prestressed concrete
RC Reinforced concrete
SF SpiderFLOAT
SLS Serviceability limit state
SOFT4S SpiderFLOAT Offshore Floater Tool for Sizing
ULS Ultimate limit state
USFLOWT Ultra-flexible Smart Floating Offshore Wind

Turbine
UVA University of Virgina

B. List of Symbols

ANSYS ANSYS Mechanical APDL Release 2019 R2,
commercial FEA package

a Depth of stress-block from top compressed fiber
ac Generic constant
a Generic constant
a Generic constant
A Joint between leg and central stem
AB Line connecting A to B
Ac Pure concrete cross-sectional surface area
Ac,eff Effective (normalized) concrete cross-sectional

surface area
Acp Area enclosed by outside perimeter of concrete cross

section
Act Area of that part of the cross section between the flex-ural tension face and the centroid of the gross

section
Ac(ya) Pure concrete cross-sectional surface area above

the chord at ya
Ac(yn) Pure concrete cross-sectional surface area above

the chord at yn
AC1 Cross-sectional area of cable set C1
AC2 Cross-sectional area of cable set C2
Ag Gross cross-sectional area
Al Torsional additional longitudinal reinforcement total

cross-sectional area

ALeff Concrete, leg cross-sectional area normalized for
nonprestressed rebar

Ao Area enclosed by the shear (spiral/tie) flow path
Aoℎ Area enclosed by centerline of shear (spiral/tie) rein-

forcement
Ap,i Tendon cross-sectional area
Aptot Total cable cross-sectional area at the station of in-

terest
As Nonprestressed reinforcement cross-sectional area
As,i Nonprestressed reinforcement cross-sectional area
Ast Shear reinforcement (spiral/tie) cross-sectional area
Astot Total nonprestressed reinforcement cross-sectional

area at the station of interest
Av Torsional shear reinforcement (spiral/tie) cross-

sectional area
Avtot Total shear reinforcement cross-sectional area at the

station of interest
bc Generic constant
B Joint between leg and buoyancy can
Bc Buoyancy force at B
Beff Effective buoyancymagnitude at jointB, accounting

for other hydrodynamic forces, for the weight of
the buoyancy can bundle, half the weight of the
cables, and half the weight of the leg

Beff Effective buoyancy at joint B, accounting for other
hydrodynamic forces and the weight of the
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buoyancy can bundle, half the weight of the ca-
bles, and half the weight of the leg

B0 Joint between leg and buoyancy can undeflected con-
ditions

cc Concrete cover
c1 Generic onstant used in the integration of ODE
c2 Generic onstant used in the integration of ODE
Cc Resultant force in the compressive concrete part of the

cross-section (negative if compressive)
C1 Cable set 1
C1a Cable 1a, one of the two cables in the C1 set
C1b Cable 1b, one of the two cables in the C1 set
C2 Cable set 2
C2a Cable 2a, one of the two cables in the C2 set
C2b Cable 2b, one of the two cables in the C2 set
dc Single buoyancy can inner diameter
dL Leg inner diameter
dsℎ Distance to the center of pre and non-prestressed ten-sion reinforcement from top fiber, but ≤ 0.8ℎb
ds,i Inner longitudinal-reinforcement diameter
ds,o Outer longitudinal-reinforcement diameter
dssi Inner shear-tie diameter
dsso Outer shear-tie diameter
Dc Single buoyancy can outer diameter
DL Leg outer diameter
Ds,i Inner longitudinal-reinforcement placement diameter
Ds,o Outer longitudinal-reinforcement placement diame-

ter
Dss,i Inner shear-tie placement diameter
Dss,o Outer shear-tie placement diameter
Ec Concrete Young’s modulus
Ep Cable steel Young’s modulus
Es Longitudinal reinforcement Young’s modulus
Est Shear reinforcement Young’s modulus
f Generic continuos function
fc Concrete compressive strength
fr Rupture modulus
fse Stress in the prestressing reinforcement at nominal ax-

ial strength of the cross-section
fuc Cable ultimate strength
fup Prestressing tendon ultimate strength
fus Longitudinal reinforcement ultimate strength
fyc Cable yield strength
fyl Torsional longitudinal reinforcement yield strength
fyp Prestressing tendon yield strength
fys Longitudinal reinforcement yield strength
fyst Stirrup/tie yield strength
Fc Horizontal component of the force exerted by the can

and mooring line onto the leg
g Magnitude of the gravitational acceleration
ℎb Height/depth of the cross-section

ℎn Neutral axis distance from the cross-section extreme
compressed fiber

ic Generic integer number
Jxxceff Normalized concrete cross-sectional second area

moment of inertia
Jxxg Gross cross-sectional second area moment of inertia
Jxx|Ac (ya) Second area moment of inertia for Ac(ya)
LC1,f Cable C1 length with deformed geometry
LC1,0 Cable C1 length with undeformed geometry
LC2,f Cable C2 length with deformed geometry
LC2,0 Cable C2 length with undeformed geometry
LL Leg length in the deformed condition
LL0 Leg length in the undeformed condition
meff Effective mass per unit length, to account for hydro-

static buoyancy, hydrodynamic, and distributed
inertial loads

M Bending moment about the local xb axis at the span
station of interest

M̄ Sum ofMC and one half the sum ofMC1, MC2, andleg mass
Mcr Bending moment causing cracking at the cross-

section of interest
MC Mass of the buoyancy can bundle at B
MC1 Mass of cable set C1
MC2 Mass of cable set C2
Mn Nominal bending moment resistance at the station of

interest
Mu Factored bending moment at the station of interest
Mz Torque at the span station of interest
Mzu Factored torsion load at the station of interest
nm Number of members
np Number of prestressing tendons
nRC Ratio of rebar steel to concrete Young’s moduli
ns,i Number of non-prestressed, inner longitudinal rein-

forcement
ns,o Number of non-prestressed, outer longitudinal rein-

forcement
N Axial load at the span station of interest
NC1 Normal force in cable C1
NC2 Normal force in cable C2
Ne Force exerted on the leg directed along the line con-

necting hinges AB
Ne,cr Eulerian critical load
Nu Factored normal (axial) load at the station of interest
pℎ Perimeter described by centerline of stirrup element
p(zb)Component of the external, distributed static loading

along the beam zb axis
Pn Nominal axial strength in compression, for a given ex-

ternal bending moment
P ∗
n Nominal axial strength, in either tension or compres-

sion depending on theN sign
Pn,max Maximum nominal axial strength in compression
Pnt,max Maximum nominal axial strength in tension
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P0,c1 C1 cable initial prestress force (positive)
P0,c2 C2 cable initial prestress force (positive)
P0i Tendon initial prestress force (positive)
q(zb)Component of the external, distributed static loading

along the beam yb axis
rx Factor for prestress long term relaxation
R∞ Relaxation loss in percentage of initial preload
sst Shear reinforcement (spiral/tie) pitch or spacing
ssv Shear reinforcement (spiral/tie) spacing
tw Wall thickness
T Shear component along the y-axis at span station of in-

terest
Tptot Resultant force from the prestressed reinforcement

(positive if tensile)
Tstot Resultant force from the nonprestressed reinforce-

ment (positive if tensile)
Tqn Nominal torsional strength
Tu Factored shear load at the station of interest
uB Deflection of B along XG
v Deflection normal to beam axis in the yb direction
v′ First derivative of v with respect tozb
v′′ Second derivative of v with respect tozb
v′′′ Third derivative of v with respect tozb
vℎ Solution to the homogeneous ODE for v
vp Particular solution to the ODE for v
Vc Concrete shear strength
Vn Nominal shear strength at the station of interest

Vs Shear strength due to tie/spiral reinforcement
w Deflection along beam axis in the zb direction
w′ First derivative of w with respect to zb
wB Deflection of B along ZG
x Cross-section x-axis
xb Beam local x-axis
XG Global x-axis
y Cross-section y-axis
ya Distance from cross-section centroid to bottom of

stress-block
yb Beam local y-axis
yn Neutral axis distance from the cross-section’s centroid
yp,i Y-coordinate of i-th prestressed tendon element
ys Rebar element coordinate along y-axis
ys,i Y-coordinate of i-th rebar element
YG Global y-axis
YG|Ac (ya) Y-coordinate of the centroid of Ac(ya)
YG|Cc Y-coordinate of the centroid of the forces resulting

in Cc
YG|Tptot Y-coordinate of the centroid of the forces resultingin Tptot
YG|Tstot Y-coordinate of the centroid of the forces resultingin Tstot
zb Local z-axis
ẑb Generic value of zb
zm Generic value of zb
ZG Global z-axis

C. List of Greek Symbols

� Constant in the solution of ODE
�s Angle between the leg axis and the plane containing theshear reinforcement

�1 Factor relating the depth of the equivalent rectangular
compressive stress block to the depth of neutral
axis (ACI, 2014, Sect. 22.2.2.4.1)

f,sls Load partial safety factor for SLS
f,uls Load partial safety factor for ULS

� Generic strain
�̂ Quantity less than 1
�c Strain in the concrete
�c,min Minimum strain in the concrete
�c,max Max strain in the concrete
�cu Ultimate strain for the concrete, -0.003 (ACI, 2014,

Sect.22.2.2.1)
�c(y) Strain in the concrete
�C1 Strain in cable C1
�C2 Strain in cable C2
�max,tp Strain in the prestressed tendon

�pe Tensile strain in the tendon at prestress transfer level
including relaxation effects

�p,i Strain in the i-th prestressed tendon
�̂p,i Contribution to the i-th prestressed tendon strain due

to bending in the cross-section
�p0,i Strain in the i-th prestressed tendon due to prestress

only
�p(y) Strain in the prestressed tendon
�p(yp,i) Strain in the prestressed tendon
�s,i Strain in the i-th rebar
�s(y) Strain in the rebar
�s(ys,i) Strain in the rebar
�ty Strain in the generic reinforcement at yield, if pre-

stressed it is set at 0.002 for ACI (2014)

�crk Angle between crack and member axis, usually taken
as 45 deg

�C1 Angle between global x and cable C1
�C1,0 Angle between global x and cable C1 before B is

deflected
�C2 Angle between global x and cable C2
�C2,0 Angle between global x and cable C2 before B is
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deflected
�L Angle between global x and leg
�L,0 Angle between global x and leg before B is deflected
� Modification factor reflecting the reduced mechanical

properties of lightweight concrete
� Poisson’s ratio
�c Concrete Poisson’s ratio
�s Longitudinal reinforcement Poisson’s ratio
�st Shear reinforcement Poisson’s ratio
�t Cable Poisson’s ratio
�Material density
�c Concrete density
�ceff Effective concrete density
�p Cable density
�s Longitudinal reinforcement density
�st Shear reinforcement density
�stm Minimum spiral/tie volume ratio (ACI, 2014, Section

10.9.3)

�stv Spiral/tie volume ratio (ACI, 2014, Section 10.9.3)
�cz Normal (axial) stress in the concrete
�cz(y) Normal (axial) stress in the concrete
�C1 Normal (axial) stress in cable set C1
�C2 Normal (axial) stress in cable set C2 at pre-stressing
�C1pt Normal (axial) stress in cable set C1 at pre-stressing
�C2pt Normal (axial) stress in cable set C2 at pre-stressing
�pz Normal (axial) stress in the prestressed tendon
�pz(yp,i) Normal (axial) stress in the i-th prestressed ten-

don element
�sz Normal (axial) stress in the rebar element
�sz(ys,i) Normal (axial) stress in the i-th rebar element
�ACI Strength reduction factor (ACI, 2014, Section

21.2.1)
 1 Angle described by the chord of the outer circular seg-ment at coordinate ya
 2 Angle described by the chord of the inner circular seg-ment at coordinate ya

D. Extended Beam Theory Development
Starting from the analysis of an infinitesimal beam segment of a leg as shown in Fig. 7, the balance of the forces is

written along yb and zb in the local (undeformed) coordinate system as in Eq. (43).
{

(N + dN) cos
[

v′
(

zb + dzb
)]

−N cos
[

v′
(

zb
)]

+ T sin
[

v′
(

zb
)]

− (T + dT ) sin
[

v′
(

zb + dzb
)]

+ p(zb)dzb = 0
(T + dT ) cos

[

v′
(

zb + dzb
)]

− T cos
[

v′
(

zb
)]

−N sin
[

v′
(

zb
)]

+ (N + dN) sin
[

v′
(

zb + dzb
)]

+ q(zb)dzb = 0
(43)

where N is the axial load at the span station of interest; v is the deflection normal to beam axis in the yb direction; Tis the shear component along the y-axis at span station of interest; p(zb) is the component of the external, distributed
static loading along the beam zb axis; q(zb) is the component of the external, distributed static loading along the beam
yb axis; d denotes the differential operator. The prime symbols ′, ′′, and ′′′ denote first, second, and third order spatial
derivatives relative to zb, respectively. By adopting the definitions in Eq. (44), one obtains Eq. (4).

(N + dN) = N|zb+dzb
cos

[

v′
(

zb + dzb
)]

= cos
(

v′
)

|zb+dzb
(44)

{

d
(

N cos
(

v′
))

− d
(

T sin
(

v′
))

+ p(zb)dzb = 0
d
(

T cos
(

v′
))

+ d
(

N sin
(

v′
))

+ q(zb)dzb = 0
(4 revisited)

Under the hypotheses mentioned in Section 4, Eq. (4) can be integrated from zb=0m to zb to give:
{

N cos
(

v′
)

− T sin
(

v′
)

= c1 + meffg sin �Lzb
N sin

(

v′
)

+ T cos
(

v′
)

= c2 − meffg cos �Lzb
(45)

Among the boundary conditions at zb=0m (Fig. 17), one could write the force balance along zb and yb in the beam
local coordinate system. The reaction at the joint A is divided into two contributions: one aligned with the globalZG,
and one, Ne, with AB. It is straightforward to verify that the vertical component must be equal to 1/2 the effective
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weight of the beam. No other force can act on joint A for equilibrium of the leg. Thus, one arrives at Eq. (46):
⎧

⎪

⎨

⎪

⎩

N(0) cos
(

v′(0)
)

− T (0) sin
(

v′(0)
)

+Ne +
meffgLL0

2
sin

(

v′(0)
)

= 0

N(0) sin
(

v′(0)
)

+ T (0) cos
(

v′(0)
)

−
meffgLL0

2
cos

(

v′(0)
)

= 0
(46)

T(0)

x

G

z

G

Ne M(0)

Q
L

m

eff

gL

L

/2

v'(0)

N(0)

A

B

Ne

p(z

b

)

q(z

b

)

Figure 17: Diagram showing the boundary conditions imposed at zb=0m in the development of SOFT4S’s structural
model. Meaning of symbols in main text.

w

w+dw

v

v+dv

dz

b

ds

v'+v"dz

b

v'

dv

dz

b

+dw

T

N

T+dT

M+dM

N+dN

M

p(z

b

)

q(z

b

)

Figure 18: Diagram showing an infinitesimal beam segment undergoing stretching and deflection with applied external
and internal forces. Meaning of symbols in main text.

From Eq. (46) and setting zb=0 in Eq. (45), the integration constants can be calculated as in Eq. (47), and the
expressions forN and T can then be obtained as shown in Eq. (6).

⎧

⎪

⎨

⎪

⎩

c1 = −Ne −
meffgLL0

2
sin

(

�L
)

c2 =
meffgLL0

2
cos

(

�L
)

(47)
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⎧

⎪

⎨

⎪

⎩

N = −
[

Ne + meffg sin
(

�L
)

(

LL0
2

− zb

)]

cos
(

v′
)

+ meffg cos
(

�L
)

(

LL0
2

− zb

)

sin
(

v′
)

T =
[

Ne + meffg sin
(

�L
)

(

LL0
2

− zb

)]

sin
(

v′
)

+ meffg cos
(

�L
)

(

LL0
2

− zb

)

cos
(

v′
)

(6 revisited)
Turning now to the bending moments, Eq. (48) gives the moment balance about the right end of the beam segment

and along the local xb ≡ YG (see also Fig. 18):
dM −

[

N sin
(

v′
)

+ T cos
(

v′
)] (

dw + dzb
)

+
[

N cos
(

v′
)

− T sin
(

v′
)]

dv+

q(zb)dzb

[

dw + dzb
]

2
− p(zb)dzb

dv
2

= 0
(48)

whereM is the bending moment about the local xb axis at the span station of interest. In the limit dzb → 0 , Eq. (48)
rewrites as in Eq. (49):

M ′ −
[

N sin
(

v′
)

+ T cos
(

v′
)] (

1 +w′) +
[

N cos
(

v′
)

− T sin
(

v′
)]

v′ + q(zb)dzb

[

w′ + 1
]

2
− p(zb)dzb

v′

2
= 0

(49)
Eq. (7) derives directly from Eq. (49) for dzb ≃ 0.

M ′ −
[

N sin
(

v′
)

+ T cos
(

v′
)] (

1 +w′) +
[

N cos
(

v′
)

− T sin
(

v′
)]

v′ = 0 (7 revisited)
Making use of Eq. (6), Eq. (7) can rewrite as in Eq. (8):

M ′ =
[

meffg cos
(

�L
)

(

LL0
2

− zb

)]

(

1 +w′) +
[

Ne + meffg sin
(

�L
)

(

LL0
2

− zb

)]

v′ (8 revisited)

At zb= 0m the following boundary conditions apply:
v(0) = 0
w(0) = 0
M(0) = 0

(50)

Integrating Eq. (8) between zb= 0m and the generic ẑb, and making use of the boundary conditions in Eq. (50) and of
the equality (by-parts integration) in Eq. (51), one arrives at the expression for the bending moment about xb as writtenin Eq. (52).

∫ ẑb0

(

LL0
2

− zb

)

df
dzb

dzb =
(

LL0
2

− ẑb

)

f
(

ẑb
)

−
LL0
2
f (0) + ∫ ẑb0 f

(

zb
)

dzb =
(

LL0
2

− ẑb

)

f
(

ẑb
)

−
LL0
2
f (0) + ẑbf

(51)

where themean value theorem of integrals was used and f = f (zm), with zm ∈ (0, zb) such that f (zm) = 1
ẑb

∫ ẑb0 f
(

zb
)

dzb;

M = Nev(zb) + meffg sin
(

�L
)

[(

LL0
2

− zb

)

v(zb) + vzb

]

+ meffg cos
(

�L
)

(

LL0
2
zb −

zb2

2

)

+ meffg cos
(

�L
)

[(

LL0
2

− zb

)

w(zb) +wzb

]
(52)

By employing Euler’s approximation between moment and beam axis curvature as shown in Section 4.1, a second
order, linear ODE can be derived for the deflection v. This ODE does not lend itself to an analytical solution, and in
what follows we will perform some simplifications.
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The first simplification neglects the terms containing w. In concrete, it is common to assume a maximum com-
pressive strain at ULS �cu ≃ −0.003, thus the term (1 + w′) in Eq. (8) can be taken as 1, and the integral equation
becomes:

EcJxxceffv
′′ +Nev(zb) + meffg sin

(

�L
)

[(

LL0
2

− zb

)

v(zb) + vzb

]

+ meffg cos
(

�L
)

(

LL0
2
zb −

zb2

2

)

(53)
Eq. (53) contains the boundary conditionM(0) = 0, but it is instructive to use the zero-moment condition at zb=LL0:

0 =M(LL0) = Nev(LL0) + meffg sin
(

�L
)

LL0

[

v −
v(LL0)

2

]

(54)

In the case of a flexural rigid beam, the term in brackets vanishes (hint, in a rigid rotation the deflection normal to
the beam axis is linear in zb), and the conditions translates into having v(LL0) = 0. Note that, in general, we cannot
a-priori set this boundary conditions for a non-rigid beam.

Eq. (53) is an ODE of the second order with variable coefficients, which does not have a readily useful analytical
solution.

The second simplificationwe carry out in the differential form of Eq. (8) is to replace the termmeffg sin
(

�L
)

(

LL0
2

− zb

)

that multiplies v′ with its mean value in (0, LL0), which can be easily proven to be 0. With this final approximation,
we obtain:

EcJxxceffv
′′′ +Nev

′(zb) + meffg cos
(

�L
)

(

LL0
2

− zb

)

= 0 (55)

The solution to Eq. (55) is given by Eq. (56) as the sum of the generic solution to the homogeneous equation as in
Eq. (57), and the particular solution as in Eq. (58):

v(zb) = vℎ(zb) + vp(zb) (56)
vℎ(zb) = a +

(

ac cos(�zb) + bc sin(�zb)
) (57)

vp(zb) = c1 −
meffg
Ne

(

LL0
2
zb −

zb2

2

)

cos(�L) (58)

where � =

√

Ne
EcJxxceff

(59)

By applying the boundary conditions shown in Eq. (60), one can find the expressions for the constants a=c1+a, ac , bcto return an expression for v as in Eq. (9).
⎧

⎪

⎨

⎪

⎩

v(0) = 0
v′′(0) = 0
v′′(LL0) = 0

(60)

v(zb) =
meffg

Ne�2
cos(�L)

[

cos(�zb) +
1 − cos(�LL0)
sin(�LL0)

sin(�zb) −
LL0 − zb

2
zb�

2 − 1
]

(9 revisited)

D.1. Compatibility Equation and Solution of the Structural System
From an analysis of Fig. 18, one can write:

ds =
√

(v′dzb)2 + (w′dzb + dzb)2 =
dzb

√

v′2 +w′2 + 2w′ + 1 =

dzb
√

v′2 + (1 +w′)2
(61)
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For (1 +w′) ≃ 1, this leads to the beam strain component associated with shortening due to bending:

� =
ds − dzb
dzb

=
√

1 + v′2 − 1 ≃ 1
2
v′2 (62)

where in Eq. (62), a Taylor expansion up to the first order was used for v′ → 0.
If, however, we consider the quantity �̂ = v′2 +w′2 + 2w′ << 1, and expand Eq. (61) in a Taylor series retaining

terms up to the second order, we can write:

� =
ds − dzb
dzb

≃ 1
2

[

v′2 +w′2 + 2w′
]

− 1
8

[

v′2 +w′2 + 2w′
]2

+ o(2) ≃

1
2
v′2 +w′ + o(2)

(63)

Thus the total strain � is given by the sum of axial strain,w′, and the shortening of the beam due to bending, 1
2
v′2, and

a second-order constitutive equation can be attained:

N = EcALeff � = EcALeff
[1
2
v′2 +w′

]

(12 revisited)

Starting from Eq. (6), and acknowledging Eq. (12), one can write a PDE for w that includes terms in v:

EcALeffw
′ = −

[

Ne + meffg sin
(

�L
)

(

LL0
2

− zb

)]

cos
(

v′
)

+ meffg cos
(

�L
)

(

LL0
2

− zb

)

sin
(

v′
)

− EcALeff
1
2
v′2

(64)

For small angle deflections, (v′ << 1, hence cos(v′) ≃ 1, and sin(v′) ≃ v′), Eq. (64) can be simplified as in Eq. (65):

EcALeffw
′ = −

[

Ne + meffg sin
(

�L
)

(

LL0
2

− zb

)]

+ meffg cos
(

�L
)

(

LL0
2

− zb

)

v′ − EcALeff
1
2
v′2

(65)
and by replacing v with the expression in (9), Eq. (66) is attained.

w′ = − 1
EcALeff

[

Ne + meffg sin
(

�L
)

(

LL0
2

− zb

)]

+

(

meffg cos(�L)
)2

EcALeffNe�

(

LL0
2

− zb

)[

− sin(�zb) −
�
2
(

LL0 − 2zb
)

+
1 − cos(�LL0)
sin(�LL0)

cos(�zb)
]

−

(

meffg cos(�L)
)2

2Ne
2�2

[

− sin(�zb) −
�
2
(

LL0 − 2zb
)

+
1 − cos(�LL0)
sin(�LL0)

cos(�zb)
]2

(66)
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By integrating Eq. (66) with the boundary conditions in Eq. (50), the expression forw(zb) can be reached as in Eq. (13).

w(zb) = − 1
EcALeff

[

Ne ∗ zb + meffg sin
(

�L
)

(

LL0zb − zb2

2

)]

+

(

meffg cos(�L)
)2

EcALeffNe

[

1
�2

(

LL0
2

− zb

)

cos (�zb) −
LL0
2�2

+
sin (�zb)
�3

+
6LL0zb2 − 3LL02zb − 4zb3

12
+ tan

�LL0
2

(

sin(�zb)
�2

(

LL0
2

− zb

)

+ 1
�3

(

1 − cos (�zb)
)

)]

+

(

meffg cos(�L)
)2

2Ne
2�3

[

−
�zb
2

+
sin (2�zb)

4
+

−4zb3 + 6LL0zb2 − 3LL02zb
12

�3

− tan2
�LL0
2

(

�zb
2

+
sin (2�zb)

4

)

+ 2 sin (�zb) − �LL0 + �
(

LL0 − 2zb
)

cos (�zb)

+ tan
�LL0
2

(

1 − cos2 (�zb)
)

+ tan
�LL0
2

(

2 − 2 cos (�zb) + �(LL0 − 2zb) sin(�zb)
)

]

(13 revisited)
By calculating w(LL0), the compatibility equation required to solve the indeterminate system of equations in Eq. (1)
is written as in Eq. (16). Through some algebraic and trigonometric reductions, and by recognizing that w(LL0) =
LL − LL0, Eq. (16) rewrites as in Eq. (67):

EcALeff (LL − LL0)
LL0

= −Ne −

(

meffg cos(�L)
)2

12EcJxxceff
LL0

4
[

1
LL02�2

+ 12
LL04�4

− 24
LL05�5

tan
�LL0
2

]

− EcALeff

(

meffg cos(�L)
)2

24Ec2Jxxceff 2
LL0

6
[

1
�4LL04

− 60
LL07�7

tan
�LL0
2

+ 24
�6LL06

+
12

(

1 − cos(�LL0)
)

�6LL06 sin
2 (�LL0)

]

(67)

where LL is a function of �L, i.e., the final angle assumed by the line connecting AB.
The system of equations to solve for the axial loads can finally be written as in Eq. (17).
If the final configuration angles (�C1, �C2, �L) and the final length of the leg LL are known, then Eq. (17) can be

solved for the unknowns NC1, NC2, and Ne. However, it is unlikely that these quantities would be known a-priori,
unless a fixed geometry is desired. It is more useful to express the angles of the components and the final length of the
leg in terms of global displacements of the hinge at B, i.e., (uB , wB) as in Eq. (18) and Eq. (19).

E. Service Limit State Verification Criteria
To verify the structure against SLS, the following criteria3 must be met. Some of these criteria allow the stress

linear treatment of Section 5.1.1 to be applicable within an inhomogenous cross-section. The torsion load is expected
to be negligible, given the moment free connection joint with the buoyancy can, thereby items 12-13 are shown only
for completeness.

1. Ensure cross-sectional properties are similar in any direction, i.e., impose minimum number of longitudinal re-
inforcement: ns,i, ns,o ≥ 8; where ns,i and ns,o are the numbers of inner and outer longitudinal reiforcement,
respectively.

2. Ensure minimum concrete cover (e.g., 3 in, given the harsh and corrosive marine environment) on outer (near
the outer surface) and inner (near the inner surface) reinforcement elements: DL − (Ds,o + ds,o + 2dsso)

2
>

3 The meaning of symbols used in these criteria is further given in Table 1 and in Appendices B–C.
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1.5 in..3 in and (Ds,i − ds,i − 2dssi) − dL
2

> 1.5 in..3 in.

3. Ensure distance among longitudinal reinforcement elements is within allowables (e.g., minimum clear spacing

ACI, 2014, Sections 7.6.7.1 and 25.2):

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�Ds,i

ns,i
− ds,i > max

(

1.5 in, 1.5ds,i
)

�Ds,o

ns,o
− ds,o > max

(

1.5 in, 1.5ds,o
)

.

4. Verify that the maximum compressive strain is below allowable: �c,min > −0.003.

5. Verify that the maximum compressive stresses in the concrete lie below a safe threshold (also minimizing fatigue
failure risk) (ACI, 2014, Sections 24.5.3.2 and 24.5.4.1): min

(

�cz
)

f,sls > −0.85fc�ACI ≃ −0.6fc ;
�ACI is the strength reduction factor (ACI, 2014, Section 21.2.1).

6. Ensure the section is uncracked: �c(DL∕2) ≤ 0 .

7. Ensure the maximum rebar stress is below the allowable values: |f,slsmaxi
(

�sz(ys,i)
)

| ≤ �ACIfys, where fysis the longitudinal reinforcement yield strength.

8. Ensure maximum cable stress below allowable: f,slsmax
(

�C1, �C2
)

≤ �ACIfyc , where fyc is the cable yieldstrength.

9. Ensure a minimum quantity (Astot) of longitudinal reinforcement for flexural members:

Astot: Astot > max

(

200

(

DL − dL
)

0.8DL

fys
, 3 ∗

√

fc

(

DL − dL
)

0.8DL

fys

)

in imperial units (ACI, 2014, Sec-
tion 9.6.1.2);

Astot: 0.01 <
Astot
Ag

≤ 0.08 (ACI, 2014, Section 10.6);
Astot: Astot ≥ 0.004Act, where Act is the area of that part of the cross section between the flexural tension face

and the centroid of the gross section, (ACI, 2014, Section 9.6.2.3).
10. Ensure minimum quantity of shear reinforcement: Av + 2Ast

ssv
≥ max

(

0.75
√

fc
DL − dL
fyst

; 50
DL − dL
fyst

)

in
imperial units (ACI, 2014, Sec.s 9.6.3.3, 9.6.4.2, and 10.6.2.2); where Av is the torsional shear reinforcement
(spiral/tie) cross-sectional area; Ast is the shear reinforcement (spiral/tie) cross-sectional area; and ssv is the
shear reinforcement (spiral/tie) spacing; fyst is the stirrup/tie yield strength.

11. Ensure spacing of shear reinforcement is less than maximum values (ACI, 2014, Sections 10.7.6.5 and 25.7.2.1)
given by:

ssv ≤

[{

min
(

24 in; 3ℎb∕4
) if Vs ≤ 4

√

fc(DL − dL)0.8DL
min

(

12 in; 3ℎb∕8
) if Vs > 4

√

fc(DL − dL)0.8DL
,min

(

48dsso, 16ds,o, 0.75DL, 24 in
)

]

(68)
where all the quantities are in inches, pound force, and psi; where ℎb is the height/depth of the cross-section;
Vs is the shear strength due to tie/spiral reinforcement. The contribution to the nominal shear strength of the
cross-section (Vn) due to the shear reinforcement (Vs) and the concrete (Vc) are given by ACI (2014, Section
22.5.1.2, 22.5.5-22.5.7):

Vn = �ACI
(

Vs + Vc
) (69)

with Vs = min
(

Avtotfyst
dsℎ
sst

∗ (cos �s + sin �s), 8
√

fc
(

DL − dL
)

dsℎ

)

(70)
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and Vc =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

2
(

1 − N
2000Ag

)

� ∗
√

fc
(

DL − dL
)

dsℎ if N < 0.

2� ∗
√

fc
(

DL − dL
)

dsℎ if N = 0.

2
(

1 −
Nu

500Ag

)

� ∗
√

fc
(

DL − dL
)

dsℎ if N > 0.

(71)

where �ACI=0.75 for shear and torsion verifications; dsℎ is the distance to the center of pre and non-prestressedtension reinforcement from top fiber, but ≤ 0.8ℎb, taken as dsℎ = 0.8DL; and �s is the angle between the leg
axis and the plane containing the shear reinforcement.

12. Ensure that stirrup/tie/spiral spacing is adequate for torsion per ACI (2014, Section 11.5.6.1):
{

ssv <
pℎ
8

ssv < 12 in
(72)

where ssv is the shear reinforcement (spiral/tie) spacing; pℎ is the perimeter described by centerline of stirrup
element.

13. Ensure that extra longitudinal reinforcement exists and is above minimum for torsion per (ACI, 2014, Section
9.6.4.3):

Al ≥ min
(

5
√

fc
Acp
fyst

− Astssvpℎ
fyst
fyl

)

,
5Acp

√

fc
fyl

ssv −
25(DL − dL)

fyst
pℎ
fyst
fyl

(73)

where Acp is the area enclosed by outside perimeter of concrete cross section; fyl is the torsional longitudinalreinforcement yield strength; Al is the torsional additional longitudinal reinforcement total cross-sectional area.
Al can be the total longitudinal reinforcement area used minus the one needed to satisfy all the other criteria
above for flexural and compression, and must be uniformly distributed around the cross-section at 12 in spacing
or less.

F. Ultimate Limit State Verification Criteria
To verify the structure against ULS, the following criteria must be met:
1. Ensure maximum utilizations for normal force and bending moments (left-hand sides of Eq. (74)) are less than

unity:
f,ulsN
�ACIP ∗

n
≤ 1

f,ulsM
�ACIMn

≤ 1
(74)

In Eq. (74), P ∗
n is the nominal axial strength, in either tension or compression depending on the N sign per

Eq.s (41)-(42). The utilizations can be checked by ensuring there is sufficient horizontal (�ACIMn - f,ulsM for
the givenNu) and vertical (�ACIPn - f,ulsN for the givenMu) margin between the factored external loads and
the safe limit curve of the interaction diagram.

2. Ensure maximum rebar stress below allowable: f,ulsmaxi
(

�sz(ys,i)
)

≤ �ACIfus ; where fus is the longitudinalreinforcement ultimate strength;
3. Ensure maximum tendon stress below allowable: f,ulsmaxi

(

�pz(yp,i)
)

≤ �ACIfup ; where fup is the prestress-ing tendon ultimate strength;
4. Ensure 1.2Mcr < �ACIMu per ACI (2014, Section 18.8.2). This condition implies that the total amount of

bonded, prestressed and nonprestressed, longitudinal reinforcement shall be adequate to develop a factored load
at least 1.2 times the cracking load computed on the basis of the modulus of rupture fr specified in ACI (2014,
Section 9.5.2.3) :

Mcr =
frJxxg
DL∕2

(75)
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fr = 7.5�
√

fc (76)
where Jxxg denotes the gross cross-sectional second area moment of inertia.

5. Ensure adequate shear strength: f,uls ∗ T ≤ Vn (see Eq.s (69)–(71));
6. Ensure adequate cross-section size against torsion (avoid cracking) (ACI, 2014, Section 22.7.7):

f,ulsT
(

DL − dL
)

dsℎ
+
f,ulsMzpℎ
1.7Aoℎtw

≤ �ACI

(

Vc
(

DL − dL
)

dsℎ
+ 8

√

fc

)

if tw <
Aoℎ
pℎ

(77)

f,ulsT
(

DL − dL
)

dsℎ
+
f,ulsMzpℎ
1.7Aoℎ2

≤ �ACI

(

Vc
(

DL − dL
)

dsℎ
+ 8

√

fc

)

otherwise (78)

where f,ulsT is the factored shear component along the y-axis at span station of interest; pℎ is the perimeter
described by centerline of stirrup element; Aoℎ is the area enclosed by centerline of shear (spiral/tie) reinforce-
ment; tw is the wall thickness; f,ulsMz is the factored torque at the span station of interest; �ACI=0.75 for
shear and torsion verifications.

7. Ensure adequate torsional strength: Mzu=f,ulsMz ≤ Tqn (ACI, 2014, Section 22.7.6.1):

Tqn = 2AoAst
fyst

ssv tan (�crk)
�ACI (79)

where Tqn is the nominal torsional strength; Ao is the area enclosed by the shear (spiral/tie) flow path; Ast is theshear reinforcement (spiral/tie) cross-sectional area; ssv is the shear reinforcement (spiral/tie) spacing; �crk is
the angle between crack and member axis, usually taken as 45 deg.

Acknowledgments
The authors would like to extend their appreciation to Dr. Kathryn Johnson, Colorado School of Mines, for sup-

porting this study and reviewing this article. More thanks go the entire USFLOWT team (NREL, CU, UVA) for their
continued development of the control system and overall offshore wind turbine performance.

CRediT authorship contribution statement
RickDamiani: Conceptualization of this study,Methodology, Software, Original draft preparation. MaxFranchi:

Conceptualization of this study, Methodology.

References
ACI, 2014. 318-14 - building code requirements for structural concrete and commentary.
Allen, H.L., 2019. Global performance testing, simulation, and optimization of a 6-mw annular floating offshore wind turbinehull.
Banister, K., 2018. Floating offshore wind: Projects and prospects, in: Ocean Renewable Energy Conference. URL: https://

pacificoceanenergy.org/wp-content/uploads/2018/09/OREC-2018_Presentation_Kevin-Bannister.pdf.
Choisnet, T., Geshier, B., Vetrano, G., 2016. Initial comparison of concrete and steel hulls in the case of Ideol’s square ring floating substructure,

in: The 15th World Wind Energy Conference, Tokyo, Japan.
DNV-GL, 2018. DNVGL-ST-0126 – support structures for wind turbines.
Dykes, K., Meadows, R., Felker, F., Graf, P., Hand, M., Lunacek, M., Michalakes, J., Moriarty, P., Musial, W., Veers, P., 2011. Applications of

Systems Engineering to the Research, Design, and Development of Wind Energy Systems. Technical Report NREL/TP-5000-52616. NREL.
Golden, Colorado.

ECS, 2004. Eurocode 2: Design of concrete structures.
FIB, 2013. Model code for concrete structures 2010. 434 pp.
Gilbert, R.I., Mickleborough, N., 2004. Design of Prestressed Concrete. CRC Press. 528 pp.
Gray, J.S., Hwang, J.T., Martins, J.R.R.A., Moore, K.T., Naylor, B.A., 2019. OpenMDAO: An open-source framework for multidisciplinary design,

analysis, and optimization. Structural and Multidisciplinary Optimization 59, 1075–1104. doi:10.1007/s00158-019-02211-z.
IEC, 2019. IEC TS 61400-3-2:2019 wind energy generation systems - part 3-2: Design requirements for floating offshore wind turbines.
Jonkman, J., 2013. New modularization framework for the FAST wind turbine CAE tool, in: Proceedings of the 51st AIAA Aerospace Sciences

Meeting, AIAA, Dallas, TX.
MacGregor, J.G., 2011. Reinforced Concrete: Mechanics and Design. Prentice Hall. 1176 pp.

R. Damiani and M. Franchi: Preprint submitted to Elsevier Page 34 of 35

https://pacificoceanenergy.org/wp-content/uploads/2018/09/OREC-2018_Presentation_Kevin-Bannister.pdf
https://pacificoceanenergy.org/wp-content/uploads/2018/09/OREC-2018_Presentation_Kevin-Bannister.pdf
http://dx.doi.org/10.1007/s00158-019-02211-z


SpiderFLOAT Structural Optimization

Musial, W., Beiter, P., Schwabe, P., Tian, T., Stehly, T., Spitsen, P., Robertson, A., Gevorgian, V., 2016a. 2016 Offshore Wind Technologies
Market Report. Technical Report NREL/TP-5000-68587; DOE/GO-102017-5031. National Renewable Energy Laboratory. URL: https:
//www.osti.gov/servlets/purl/1375395.

Musial, W., Heimiller, D., Beiter, P., Scott, G., Draxl, C., 2016b. 2016 Offshore Wind Energy Resource Assessment for the United States. Technical
Report NREL-TP-5000-66599. NREL. Golden, CO. URL: http://www.nrel.gov/docs/fy16osti/66599.pdf.

Orcina Ltd, 2020. Orcaflex. URL: https://www.orcina.com/orcaflex/.
Powell, G.H., 2010. Modeling for Structural Analysis — Behavior and Basics. Computers and Structures, Inc., Berkley, CA.
Stehly, T., Beiter, P., 2019. 2018 cost of wind energy review. URL: https://www.nrel.gov/docs/fy20osti/74598.pdf.
Timoshenko, S., Gere, J., 1963. Theory of Elastic Stability. second ed., McGraw-Hill.
Timoshenko, S., Young, D., 1965. Theory of Structures. Engineering societies monographs. second ed., McGraw-Hill, New York, USA. 567 pp.
Whitney, C., 1937. Design of reinforced concrete members under flexure and combinedflexure and direct compression , 483–498.
Wilson, E.L., 2002. Three Dimensional Static and Dynamic Analysis of Structures. 3 ed., Computers and Structures, Inc., Berkley, CA.

R. Damiani and M. Franchi: Preprint submitted to Elsevier Page 35 of 35

https://www.osti.gov/servlets/purl/1375395
https://www.osti.gov/servlets/purl/1375395
http://www.nrel.gov/docs/fy16osti/66599.pdf
https://www.orcina.com/orcaflex/
https://www.nrel.gov/docs/fy20osti/74598.pdf

